[1] | Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983,33(3):967-978. | [2] | Johnstone RM, Adam M, Hammond JR, et al. Vesicle folmation during reticulocyte maturationasosiciation of playsma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987,262(19):9412-9420. | [3] | Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(367):eaau6977. | [4] | Johnstone RM, Mathew A, Mason AB, et al. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins[J]. J Cell Physiol, 1991,147(1):27-36. | [5] | Valadi H, Ekstr?m K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007,9(6):654-659. | [6] | Xu ZK, Li W, Wang YJ. The roles and applications of exosomes in the host defense against Mycobacterium tuberculosis infection[J]. Chin J Animal Vet Sci, 2018,49(9):1803-1809. (in Chinese) | [6] | ( 徐兆坤, 李武, 王玉炯. 外泌体在机体抗结核分枝杆菌感染中的作用及其应用[J]. 畜牧兽医学报, 2018,49(9):1803-1809.) | [7] | Cazzoli R, Buttitta F, Di Nicola M, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer[J]. J Thorac Oncol, 2013,8(9):1156-1162. | [8] | Kruger S, Elmageed ZYA, Hawke DH, et al. Molecular characterization of exosome-like vesicles from breast cancer cells[J]. BMC Cancer, 2014,14(1):1-10. | [9] | Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake[J]. Cell Mol Neurobiol, 2016,36(3):301-312. | [10] | Schorey JS, Cheng Y, Singh PP, et al. Exosomes and other extracellular vesicles in host-pathogen interactions[J]. EMBO Rep, 2015,16(1):24-43. | [11] | Coakley G, Buck AH, Maizels RM. Host parasite communications-messages from helminths for the immune system: parasite communication and cell-cell interactions[J]. Mol Biochem Parasitol, 2016,208(1):33-40. | [12] | Wowk PF, Zardo ML, Miot HT, et al. Proteomic profiling of extracellular vesicles secreted from Toxoplasma gondii[J]. Proteomics, 2017,17:1600477. | [13] | Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer[J]. Br J Cancer, 2009,100(10):1603-1607. | [14] | Bell BM, Kirk ID, Hiltbrunner S, et al. Designer exosomes as next-generation cancer immunotherapy[J]. Nanomedicine, 2016,12(1):163-169. | [15] | Kim MS, Haney MJ, Zhao YL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanomedicine, 2016,12(3):655-664. | [16] | Kissinger P. Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues[J]. BMC Infect Dis, 2015,15(1):1-8. | [17] | Twu O, de Miguel N, Lustig G, et al. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶ parasite interactions[J]. PLoS Pathog, 2013,9(7):e1003482. | [18] | Sotillo J, Pearson M, Potriquet J, et al. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates[J]. Int J Parasitol, 2016,46(1):1-5. | [19] | Coakley G, Maizels RM, Buck AH. Exosomes and other extracellular vesicles: the new communicators in parasite infections[J]. Trends Parasitol, 2015,31(10):477-489. | [20] | Nantakomol D, Dondorp AM, Krudsood S, et al. Circulating red cell-derived microparticles in human malaria[J]. J Infect Dis, 2011,203(5):700-706. | [21] | Torrecilhas AC, Schumacher RI, Alves MJM, et al. Vesicles as carriers of virulence factors in parasitic protozoan diseases[J]. Microbes Infect, 2012,14(15):1465-1474. | [22] | Record M, Carayon K, Poirot M, et al. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies[J]. Biochim Biophys Acta, 2014,1841(1):108-120. | [23] | Marcilla A, Martin-Jaular L, Trelis M, et al. Extracellular vesicles in parasitic diseases[J]. J Extracell Vesicles, 2014,3(1):25040. | [24] | El-Assaad F, Wheway J, Hunt NH, et al. Production, fate and pathogenicity of plasma microparticles in murine cerebral malaria[J]. PLoS Pathog, 2014,10(3):e1003839. | [25] | Singh B, Daneshvar C. Human infections and detection of Plasmodium knowlesi[J]. Clin Microbiol Rev, 2013,26(2):165-184. | [26] | Cronemberger AA, Arag?o FL, de Araujo CF, et al. Extracellular vesicles from Leishmania-infected macrophages confer an anti-infection cytokine-production profile to naive macrophages[J]. PLoS Negl Trop Dis, 2014,8(9):e3161. | [27] | Silverman JM, Chan SK, Robinson DP, et al. Proteomic analysis of the secretome of Leishmania donovani[J]. Genome Biol, 2008,9(2):1-21. | [28] | da Silveira JF, Abrahamsohn PA, Colli W. Plasma membrane vesicles isolated from epimastigote forms of Trypanosoma cruzi[J]. Biochim Biophys Acta, 1979,550(2):222-232. | [29] | Garcia MR, Cura RF, Cabrera CF, et al. Extracellular vesicles shed by Trypanosoma cruzi are linked to small RNA pathways, life cycle regulation, and susceptibility to infection of mammalian cells[J]. Parasitol Res, 2014,113(1):285-304. | [30] | Liégeois S, Benedetto A, Garnier JM, et al. The V0-ATPase mediates apical secretion of exosomes containing hedgehog-related proteins in Caenorhabditis elegans[J]. J Cell Biol, 2006,173(6):949-961. | [31] | Aline F, Bout D, Amigorena S, et al. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection[J]. Infect Immun, 2004,72(7):4127-4137. | [32] | Ramírez CJ, Cruz MR, Mondragón ME, et al. Proteomic and structural characterization of self-assembled vesicles from excretion/secretion products of Toxoplasma gondii[J]. J Proteom, 2019,208:103490. | [33] | Silva VO, Maia MM, Torrecilhas AC, et al. Extracellular vesicles isolated from Toxoplasma gondii induce host immune response[J]. Parasite Immunol, 2018,40(9):e12571. | [34] | Pope SM, L?sser C. Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation[J]. J Extracell Vesicles, 2013,2(1):22484. | [35] | Kim MJ, Jung BK, Cho J, et al. Exosomes secreted by Toxoplasma gondii-infected L6 cells: their effects on host cell proliferation and cell cycle changes[J]. Korean J Parasitol, 2016,54(2):147-154. | [36] | Li DL, Zou WH, Deng SQ, et al. Analysis of the differential exosomal miRNAs of DC2.4 dendritic cells induced by Toxoplasma gondii infection[J]. Int J Mol Sci, 2019,20(21):5506. | [37] | Zhang M, Zhang CG, Ding W. Exosome in cancer diagnosis and treatment[J]. Prog Physiol Sci, 2014,45(5):372-378. (in Chinese) | [37] | ( 张敏, 张晨光, 丁卫. 外泌体及其在肿瘤诊疗中的意义[J]. 生理科学进展, 2014,45(5):372-378.) | [38] | Villarroya BC, Baixauli F, Gutiérrez VC, et al. Sorting it out: Regulation of exosome loading[J]. Semin Cancer Biol, 2014,28:3-13. | [39] | Jewett TJ, Sibley LD. The Toxoplasma proteins MIC2 and M2AP form a hexameric complex necessary for intracellular survival[J]. J Biol Chem, 2004,279(10):9362-9369. | [40] | Garcia RN, Lebrun M, Fourmaux MN, et al. The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite[J]. Cell Microbiol, 2000,2(4):353-364. | [41] | Brecht S, Carruthers VB, Ferguson DJ, et al. The Toxoplasma micronemal protein MIC4 is an adhesin composed of six conserved apple domains[J]. J Biol Chem, 2001,276(6):4119-4127. | [42] | Reiss M, Viebig N, Brecht S, et al. Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii[J]. J Cell Biol, 2001,152(3):563-578. | [43] | Clough B, Frickel EM. The Toxoplasma parasitophorous vacuole: an evolving host-parasite frontier[J]. Trends Parasitol, 2017,33(6):473-488. | [44] | Besteiro S, Dubremetz JF, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion[J]. Cell Microbiol, 2011,13(6):797-805. | [45] | Alexander DL, Mital J, Ward GE, et al. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles[J]. PLoS Pathog, 2005,1(2):e17. | [46] | Mordue DG, Desai N, Dustin ML, et al. Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring[J]. J Exp Med, 1999,190(12):1783-1792. | [47] | Théry C, Duban L, Segura E, et al. Indirect activation of na?ve CD4 + T cells by dendritic cell-derived exosomes [J]. Nat Immunol, 2002,3(12):1156-1162. | [48] | Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function[J]. Nat Rev Immunol, 2002,2(8):569-579. | [49] | Bhatnagar S, Shinagawa K, Castellino FJ, et al. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo[J]. Blood, 2007,110(9):3234-3244. | [50] | Li YW, Liu Y, Xiu FM, et al. Characterization of exosomes derived from Toxoplasma gondii and their functions in modulating immune responses[J]. Int J Nanomed, 2018,13:467-477. | [51] | Li YW, Xiu FM, Mou ZZ, et al. Exosomes derived from Toxoplasma gondii stimulate an inflammatory response through JNK signaling pathway[J]. Nanomed Lond Engl, 2018,13(10):1157-1168. | [52] | Ni AX, Ma H, Chen JL. Research progress of parasite-derived exosomes[J]. Chin J Animal Vet Sci, 2019,50(5):909-917. (in Chinese) | [52] | ( 倪爱心, 麻慧, 陈继兰. 寄生虫来源的外泌体研究进展[J]. 畜牧兽医学报, 2019,50(5):909-917.) | [53] | Li YW, Zhou HY. Moving towards improved vaccines for Toxoplasma gondii[J]. Expert Opin Biol Ther, 2018,18(3):273-280. | [54] | Beauvillain C, Ruiz S, Guiton R, et al. A vaccine based on exosomes secreted by a dendritic cell line confers protection against T. gondii infection in syngeneic and allogeneic mice[J]. Microbes Infect, 2007,9(14/15):1614-1622. | [55] | Beauvillain C, Juste MO, Dion S, et al. Exosomes are an effective vaccine against congenital toxoplasmosis in mice[J]. Vaccine, 2009,27(11):1750-1757. | [56] | Colineau L, Clos J, Moon KM, et al. Leishmania donovani chaperonin 10 regulates parasite internalization and intracellular survival in human macrophages[J]. Med Microbiol Immunol, 2017,206(3):235-257. | [57] | Zhu LH, Zhao JP, Wang JB, et al. MicroRNAs are involved in the regulation of ovary development in the pathogenic blood fluke Schistosoma japonicum[J]. PLoS Pathog, 2016,12(2):e1005423. |
|