[1] | Elsheikha HM, Marra CM, Zhu XQ. Epidemiology, pathophysiology, diagnosis, and management of cerebral toxoplasmosis[J]. Clin Microbiol Rev, 2020, 34(1): e00115-e00119. | [2] | Robert-Gangneux F, Dardé ML. Epidemiology of and diagnostic strategies for toxoplasmosis[J]. Clin Microbiol Rev, 2012, 25(2): 264-296. | [3] | Luft BJ, Conley F, Remington JS, et al. Outbreak of central-nervous-system toxoplasmosis in western Europe and North America[J]. Lancet, 1983, 1(8328): 781-784. | [4] | Henriquez SA, Brett R, Alexander J, et al. Neuropsychiatric disease and Toxoplasma gondii infection[J]. Neuroimmunomodulation, 2009, 16(2): 122-133. | [5] | Hsu PC, Groer M, Beckie T. New findings: depression, suicide, and Toxoplasma gondii infection[J]. J Am Assoc Nurse Pract, 2014, 26(11): 629-637 | [6] | Parlog A, Schlüter D, Dunay IR. Toxoplasma gondii-induced neuronal alterations[J]. Parasite Immunol, 2015, 37(3): 159-170. | [7] | Pape K, Tamouza R, Leboyer M, et al. Immunoneuropsychiatry-novel perspectives on brain disorders[J]. Nat Rev Neurol, 2019, 15(6): 317-328. | [8] | Ferrari AJ, Charlson FJ, Norman RE, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010[J]. PLoS Med, 2013, 10(11): e1001547. | [9] | Ruderfer DM, Walsh CG, Aguirre MW, et al. Significant shared heritability underlies suicide attempt and clinically predicted probability of attempting suicide[J]. Mol Psychiatry, 2020, 25(10): 2422-2430. | [10] | Wittenberg GM, Greene J, Vértes PE, et al. Major depressive disorder is associated with differential expression of innate immune and neutrophil-related gene networks in peripheral blood: a quantitative review of whole-genome transcriptional data from case-control studies[J]. Biol Psychiatry, 2020, 88(8): 625-637. | [11] | Kitaoka S. Inflammation in the brain and periphery found in animal models of depression and its behavioral relevance[J]. J Pharmacol Sci, 2022, 148(2): 262-266. | [12] | Innes S, Pariante CM, Borsini A. Microglial-driven changes in synaptic plasticity: a possible role in major depressive disorder[J]. Psychoneuroendocrinology, 2019, 102: 236-247. | [13] | Li BJ, Yang W, Ge TT, et al. Stress induced microglial activation contributes to depression[J]. Pharmacol Res, 2022, 179: 106145. | [14] | Sochocka M, Diniz BS, Leszek J. Inflammatory response in the CNS: friend or foe?[J]. Mol Neurobiol, 2017, 54(10): 8071-8089. | [15] | Xu C, Zhang LD. Research advances of kynurenine pathway in depressive disorder[J]. Mil Med J Southeast China, 2022, 24(1): 69-72. (in Chinese) | | (徐畅, 张利东. 犬尿氨酸代谢通路在抑郁症中的研究进展[J]. 东南国防医药, 2022, 24(1): 69-72.) | [16] | Jeon SW, Kim YK. Inflammation-induced depression: its pathophysiology and therapeutic implications[J]. J Neuroimmunol, 2017, 313: 92-98. | [17] | Sforzini L, Nettis MA, Mondelli V, et al. Inflammation in cancer and depression: a starring role for the kynurenine pathway[J]. Psychopharmacology, 2019, 236(10): 2997-3011. | [18] | Su WJ, Cao ZY, Jiang CL. Inflammatory mechanism of depression and its new strategy for diagnosis and treatment[J]. Acta Physiol Sin, 2017, 69(5): 715-722. (in Chinese) | | (苏文君, 曹志永, 蒋春雷. 抑郁症的炎症机制及诊疗新策略[J]. 生理学报, 2017, 69(5): 715-722.) | [19] | Sa QL, Mercier C, Cesbron-Delauw MF, et al. The amino-terminal region of dense granule protein 6 of Toxoplasma gondii stimulates IFN-γ production by microglia[J]. Microbes Infect, 2020, 22(8): 375-378. | [20] | MacKenzie CR, Heseler K, Müller A, et al. Role of indoleamine 2, 3-dioxygenase in antimicrobial defence and immuno-regulation: tryptophan depletion versus production of toxic kynurenines[J]. Curr Drug Metab, 2007, 8(3): 237-244. | [21] | Cheng JH, Xu X, Li YB, et al. Arctigenin ameliorates depression-like behaviors in Toxoplasma gondii-infected intermediate hosts via the TLR4/NF-κB and TNFR1/NF-κB signaling pathways[J]. Int Immunopharmacol, 2020, 82: 106302. | [22] | Lan HW, Lu YN, Zhao XD, et al. New role of sertraline against Toxoplasma gondii-induced depression-like behaviours in mice[J]. Parasite Immunol, 2021, 43(12): e12893. | [23] | Jiang ZH, Zhou X, Li R, et al. Whole transcriptome analysis with sequencing: methods, challenges and potential solutions[J]. Cell Mol Life Sci, 2015, 72(18): 3425-3439. | [24] | Dubey JP, Laurin E, Kwowk OC. Validation of the modified agglutination test for the detection of Toxoplasma gondii in free-range chickens by using cat and mouse bioassay[J]. Parasitology, 2016, 143: 314-319. | [25] | Li SY, He B, Yang CH, et al. Comparative transcriptome analysis of normal and CD44-deleted mouse brain under chronic infection with Toxoplasma gondii[J]. Acta Trop, 2020, 210: 105589. | [26] | Pittman KJ, Aliota MT, Knoll LJ. Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection[J]. BMC Genomics, 2014, 15(1): 806. | [27] | He JJ, Ma J, Li FC, et al. Transcriptional changes of mouse splenocyte organelle components following acute infection with Toxoplasma gondii[J]. Exp Parasitol, 2016, 167: 7-16. | [28] | Tanaka S, Nishimura M, Ihara F, et al. Transcriptome analysis of mouse brain infected with Toxoplasma gondii[J]. Infect Immun, 2013, 81(10): 3609-3619. | [29] | Smith K. Mental health: a world of depression[J]. Nature, 2014, 515(7526): 181. | [30] | De-Miguel FF, Trueta C. Synaptic and extrasynaptic secretion of serotonin[J]. Cell Mol Neurobiol, 2005, 25(2): 297-312. | [31] | Salamone JD, Ecevitoglu A, Carratala-Ros C, et al. Complexities and paradoxes in understanding the role of dopamine in incentive motivation and instrumental action: exertion of effort vs. anhedonia[J]. Brain Res Bull, 2022, 182: 57-66. | [32] | Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments[J]. Trends Neurosci, 2008, 31(9): 464-468. | [33] | Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression[J]. Trends Neurosci, 2013, 36(5): 305-312. | [34] | Diviccaro S, Giatti S, Borgo F, et al. Treatment of male rats with finasteride, an inhibitor of 5 alpha-reductase enzyme, induces long-lasting effects on depressive-like behavior, hippocampal neurogenesis, neuroinflammation and gut microbiota composition[J]. Psychoneuroendocrinology, 2019, 99: 206-215. | [35] | Suda K, Matsuda K. How microbes affect depression: underlying mechanisms via the gut-brain axis and the modulating role of probiotics[J]. Int J Mol Sci, 2022, 23(3): 1172. | [36] | Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety[J]. Nat Neurosci, 2007, 10(9): 1089-1093. | [37] | Sakamoto S, Zhu XL, Hasegawa Y, et al. Inflamed brain: targeting immune changes and inflammation for treatment of depression[J]. Psychiatry Clin Neurosci, 2021, 75(10): 304-311. | [38] | Innes S, Pariante CM, Borsini A. Microglial-driven changes in synaptic plasticity: a possible role in major depressive disorder[J]. Psychoneuroendocrinology, 2019, 102: 236-247. | [39] | Li BJ, Yang W, Ge TT, et al. Stress induced microglial activation contributes to depression[J]. Pharmacol Res, 2022, 179: 106145. | [40] | Ogyu K, Kubo K, Noda Y, et al. Kynurenine pathway in depression: a systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2018, 90: 16-25. | [41] | Egan CE, Cohen SB, Denkers EY. Insights into inflammatory bowel disease using Toxoplasma gondii as an infectious trigger[J]. Immunol Cell Biol, 2012, 90(7): 668-675. |
|