[1] | Wu YP, Ji TK, Bai SY, et al. Progress in diagnosis of toxoplasmosis[J]. Chin J Am Infect Dis, 2021, 1-17. (in Chinese) | | (吴云萍, 祭天锴, 白邵缘, 等. 弓形虫病诊断研究进展[J]. 中国动物传染病学报, 2021, 1-17.) | [2] | Jones JL, Kruszon-Moran D, Sanders-Lewis K, et al. Toxoplasma gondii infection in the United States, 1999—2004, decline from the prior decade[J]. Am J Trop Med Hyg, 2007, 77(3): 405-410. | [3] | Snyder LM, Denkers EY. From initiators to effectors: roadmap through the intestine during encounter of Toxoplasma gondii with the mucosal immune system[J]. Front Cell Infect Microbiol, 2020, 10: 614701. | [4] | Gazzinelli RT, Hieny S, Wynn TA, et al. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts[J]. Proc Natl Acad Sci USA, 1993, 90(13): 6115-6119. | [5] | Hunter CA, Subauste CS, Van Cleave VH, et al. Production of gamma interferon by natural killer cells from Toxoplasma gondii-infected SCID mice: regulation by interleukin-10, interleukin-12, and tumor necrosis factor alpha[J]. Infect Immun, 1994, 62(7): 2818-2824. | [6] | Shi WK, Xue CY, Su XZ, et al. The roles of galectins in parasitic infections[J]. Acta Trop, 2018, 177: 97-104. | [7] | Nio-Kobayashi J. Histological mapping and subtype-specific functions of galectins in health and disease[J]. Trends Glycosci Glycotechnol, 2018, 30(172): SJ47-SJ53. | [8] | Gao ZY, Liu ZN, Wang R, et al. Galectin-3 is a potential mediator for atherosclerosis[J]. J Immunol Res, 2020, 2020: 5284728. | [9] | Dong R, Zhang M, Hu QY, et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review)[J]. Int J Mol Med, 2018, 41(2): 599-614. | [10] | Vasta GR. Roles of galectins in infection[J]. Nat Rev Microbiol, 2009, 7(6): 424-438. | [11] | Wu YF, Lyu FL. Galectin-receptor interactions on the regulation of small intestinal pathology of Plasmodium berghei-infected mice[J]. J Trop Med, 2019, 19(5): 541-544. (in Chinese) | | (吴一凡, 吕芳丽. 半乳糖凝集素-受体相互作用对感染伯氏疟原虫小鼠小肠病理的调节[J]. 热带医学杂志, 2019, 19(5): 541-544.) | [12] | Yan JH, Lyu FL. The galectin-receptor interaction may regulate intestinal mucosal immunity of mice infected with Trichinella spiralis[J]. J Trop Med, 2021, 21(5): 540-543, 622. (in Chinese) | | (颜景海, 吕芳丽. 半乳糖凝集素-受体相互作用对旋毛虫感染小鼠肠道黏膜免疫的调节[J]. 热带医学杂志, 2021, 21(5): 540-543, 622.) | [13] | Lee JN, Kim J, Lee JH, et al. SIRT1 promotes host protective immunity against Toxoplasma gondii by controlling the FoxO-autophagy axis via the AMPK and PI3K/AKT signalling pathways[J]. Int J Mol Sci, 2022, 23(21): 13578. | [14] | Zhang YX, He J, Zheng HQ, et al. Association of TREM-1, IL-1β, IL-33/ST2, and TLR expressions with the pathogenesis of ocular toxoplasmosis in mouse models on different genetic backgrounds[J]. Front Microbiol, 2019, 10: 2264. | [15] | Bernardes ES, Silva NM, Ruas LP, et al. Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity[J]. Am J Pathol, 2006, 168(6): 1910-1920. | [16] | Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J]. Nat Immunol, 2005, 6(12): 1245-1252. | [17] | Bitra A, Doukov T, Wang J, et al. Crystal structure of murine 4-1BB and its interaction with 4-1BBL support a role for galectin-9 in 4-1BB signaling[J]. J Biol Chem, 2018, 293(4): 1317-1329. | [18] | Eriksen LL, Nielsen MA, Laursen TL, et al. Early loss of T lymphocyte 4-1BB receptor expression is associated with higher short-term mortality in alcoholic hepatitis[J]. PLoS One, 2021, 16(8): e0255574. | [19] | He J, Hou YH, Lu FL. Blockage of galectin-receptor interactions attenuates mouse hepatic pathology induced by Toxoplasma gondii infection[J]. Front Immunol, 2022, 13: 896744. | [20] | Hu XH, Tang MX, Mor G, et al. Tim-3: Expression on immune cells and roles at the maternal-fetal interface[J]. J Reprod Immunol, 2016, 118: 92-99. | [21] | Wu C, Thalhamer T, Franca RF, et al. Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells[J]. Immunity, 2014, 41(2): 270-282. | [22] | Raetz M, Hwang SH, Wilhelm CL, et al. Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN-γ-dependent elimination of Paneth cells[J]. Nat Immunol, 2013, 14(2): 136-142. | [23] | Heimesaat MM, Bereswill S, Fischer A, et al. Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii[J]. J Immunol, 2006, 177(12): 8785-8795. | [24] | Wu B, Lyu FL. Progress of CD8+ T cell-mediated immune response to Toxoplasma gondii infection[J]. Chin J Parasitol Parasit Dis, 2014, 32(2): 143-147. (in Chinese) | | (吴斌, 吕芳丽. CD8+ T细胞免疫应答在刚地弓形虫感染免疫中的功能研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(2): 143-147.) | [25] | Lang C, Gross U, Lüder CGK. Subversion of innate and adaptive immune responses by Toxoplasma gondii[J]. Parasitol Res, 2007, 100(2): 191-203. | [26] | Kobayashi M, Aosai F, Hata H, et al. Toxoplasma gondii: difference of invasion into tissue of digestive organs between susceptible and resistant strain and influence of IFN-gamma in mice inoculated with the cysts perorally[J]. J Parasitol, 1999, 85(5): 973-975. | [27] | Shin EH, Chun YS, Kim WH, et al. Immune responses of mice intraduodenally infected with Toxoplasma gondii KI-1 tachyzoites[J]. Korean J Parasitol, 2011, 49(2): 115-123. |
|