[1] | Bengis RG, Leighton FA, Fischer JR, et al. The role of wildlife in emerging and re-emerging zoonoses[J]. Rev Sci Tech, 2004, 23(2): 497-511. | [2] | Antia R, Regoes RR, Koella JC, et al. The role of evolution in the emergence of infectious diseases[J]. Nature, 2003, 426(6967): 658-661. | [3] | Woolhouse MEJ, Gowtage-Sequeria S. Host range and emerging and reemerging pathogens[J]. Emerg Infect Dis, 2005, 11(12): 1842-1847. | [4] | Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence[J]. Philos Trans R Soc Lond B Biol Sci, 2001, 356(1411): 983-989. | [5] | Bhatia R. Implementation framework for One Health approach[J]. Indian J Med Res, 2019, 149(3): 329-331. | [6] | Bos KI, Schuenemann VJ, Golding GB, et al. A draft genome of Yersinia pestis from victims of the black death[J]. Nature, 2011, 478(7370): 506-510. | [7] | Patterson KB, Runge T. Smallpox and the native American[J]. Am J Med Sci, 2002, 323(4): 216-222. | [8] | Elias C, Nkengasong JN, Qadri F. Emerging infectious diseases-learning from the past and looking to the future[J]. N Engl J Med, 2021, 384(13): 1181-1184. | [9] | Bonilla-Aldana DK, Rodriguez-Morales AJ. Is monkeypox another reemerging viral zoonosis with many animal hosts yet to be defined?[J]. Vet Q, 2022, 42(1): 148-150. | [10] | Gottschalk M, Xu JG, Calzas C, et al. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen?[J]. Future Microbiol, 2010, 5(3): 371-391 | [11] | Gao LM, Cheng F. History and new domain: novel narrative on the spread and control of the epidemic[J]. Pac J, 2020, 28(10): 95-106. (in Chinese) | | (高良敏, 程峰. 历史与新域: 新型传染病流行与控制的新叙述[J]. 太平洋学报, 2020, 28(10): 95-106.) | [12] | VijayaVenkataRaman S, Iniyan S, Goic R. A review of climate change, mitigation and adaptation[J]. Renew Sustain Energy Rev, 2012, 16(1): 878-897. | [13] | The Intergovernmental Panel on Climate Change. Climate change 2022: impacts,adaptation and vulnerability[EB/OL]. (2022-02-28) [2023-05-11]. https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf. | [14] | Rupasinghe R, Chomel BB, Martínez-López B. Climate change and zoonoses: a review of the current status, knowledge gaps, and future trends[J]. Acta Trop, 2022, 226: 106225. | [15] | The Intergovernmental Panel on Climate Change. Human health: impacts, adaptation, and cCo-Benefits[EB/OL]. (2014-03-31) [2023-05-11]. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap11_FINAL.pdf. | [16] | Mills JN, Gage KL, Khan AS. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan[J]. Environ Health Perspect, 2010, 118(11): 1507-1514. | [17] | Andersen LK, Davis MDP. The effects of the El Ni?o Southern Oscillation on skin and skin-related diseases: a message from the International Society of Dermatology Climate Change Task Force[J]. Int J Dermatol, 2015, 54(12): 1343-1351. | [18] | Nava A, Shimabukuro JS, Chmura AA, et al. The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil[J]. ILAR J, 2017, 58(3): 393-400. | [19] | Gray JS, Dautel H, Estrada-Pe?a A, et al. Effects of climate change on ticks and tick-borne diseases in europel[J]. Inter-discip Perspect Infect Dis, 2009: 593232. | [20] | Atehmengo NL, Idika IK, Shehu ARI. Climate change/global warming and its impacts on parasitology/entomology[J]. Open Parasitol J, 2014, 5(1): 1-11. | [21] | Carlson CJ, Albery GF, Merow C, et al. Climate change increases cross-species viral transmission risk[J]. Nature, 2022, 607(7919): 555-562. | [22] | Butler CD, Harley D. Primary, secondary and tertiary effects of eco-climatic change: the medical response[J]. Postgrad Med J, 2010, 86(1014): 230-234. | [23] | Patz JA, Daszak P, Tabor GM, et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence[J]. Environ Health Perspect, 2004, 112(10): 1092-1098. | [24] | Leal Filho W, Azeiteiro UM, Alves F. Improving resilience and reducing risks[M]. Cham: Springer International Publishing, 2016: 231-259. | [25] | Mora C, McKenzie T, Gaw IM, et al. Over half of known human pathogenic diseases can be aggravated by climate change[J]. Nat Clim Chang, 2022, 12(9): 869-875. | [26] | Kimes NE, Grim CJ, Johnson WR, et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus[J]. ISME J, 2012, 6(4): 835-846. | [27] | Martin V, Chevalier V, Ceccato P, et al. The impact of climate change on the epidemiology and control of Rift Valley fever[J]. Rev Sci Tech, 2008, 27(2): 413-426. | [28] | El-Sayed A, Kamel M. Climatic changes and their role in emergence and re-emergence of diseases[J]. Environ Sci Pollut Res Int, 2020, 27(18): 22336-22352. | [29] | Gage KL, Burkot TR, Eisen RJ, et al. Climate and vectorborne diseases[J]. Am J Prev Med, 2008, 35(5): 436-450. | [30] | Githeko AK, Lindsay SW, Confalonieri UE, et al. Climate change and vector-borne diseases: a regional analysis[J]. Bull World Health Organ, 2000, 78(9): 1136-1147. | [31] | Anyamba A, Linthicum KJ, Tucker CJ. Climate-disease connections: rift valley fever in Kenya[J]. Cad Saude Publica, 2001, 17 Suppl: 133-140. | [32] | Baker-Austin C, Trinanes JA, Salmenlinna S, et al. Heat wave-associated vibriosis, Sweden and Finland, 2014[J]. Emerg Infect Dis, 2016, 22(7): 1216-1220. | [33] | Jones BA, Grace D, Kock R, et al. Zoonosis emergence linked to agricultural intensification and environmental change[J]. Proc Natl Acad Sci USA, 2013, 110(21): 8399-8404. | [34] | Zell R, Krumbholz A, Wutzler P. Impact of global warming on viral diseases: what is the evidence?[J]. Curr Opin Biotechnol, 2008, 19(6): 652-660. | [35] | White RJ, Razgour O. Emerging zoonotic diseases originating in mammals: a systematic review of effects of anthropogenic land-use change[J]. Mamm Rev, 2020, 50(4): 336-352. | [36] | Myers SS, Gaffikin L, Golden CD, et al. Human health impacts of ecosystem alteration[J]. Proc Natl Acad Sci USA, 2013, 110(47): 18753-18760. | [37] | Beldomenico PM, Begon M. Disease spread, susceptibility and infection intensity: vicious circles?[J]. Trends Ecol Evol, 2010, 25(1): 21-27. | [38] | Zhu BH, Wang LG, Sun YS, et al. Progress in researches on surveillance and early warning of infectious diseases based on big data[J]. Chin J Public Health, 2016, 32(9): 1276-1279. (in Chinese) | | (祝丙华, 王立贵, 孙岩松, 等. 基于大数据传染病监测预警研究进展[J]. 中国公共卫生, 2016, 32(9): 1276-1279.) | [39] | Váradi L, Luo JL, Hibbs DE, et al. Methods for the detection and identification of pathogenic bacteria: past, present, and future[J]. Chem Soc Rev, 2017, 46(16): 4818-4832. | [40] | Pascual M, Bouma MJ. Do rising temperatures matter?[J]. Ecology, 2009, 90(4): 906-912. | [41] | Kuenzi AJ, Douglass RJ, Bond CW, et al. Long-term dynamics of Sin Nombre viral RNA and antibody in deer mice in Montana[J]. J Wildl Dis, 2005, 41(3): 473-481. | [42] | Klein SL, Cernetich A, Hilmer S, et al. Differential expression of immunoregulatory genes in male and female Norway rats following infection with Seoul virus[J]. J Med Virol, 2004, 74(1): 180-190. | [43] | Yates TL, Mills JN, Parmenter CA, et al. The ecology and evolutionary history of an emergent disease: Hantavirus pulmonary syndrome[J]. BioScience, 2002, 52(11): 989. | [44] | Black PF, Butler CD. One Health in a world with climate change[J]. Rev Sci Tech OIE, 2014, 33(2): 465-473. | [45] | NASA’s Global Climate Change. Climate change adaptation and mitigation[EB/OL]. (2021-01-12)[2022-07-15]. https://climate.nasa.gov/solutions/adaptation-mitigation. | [46] | Delpla I, Diallo TA, Keeling M, et al. Tools and methods to include health in climate change adaptation and mitigation strategies and policies: a scoping review[J]. Int J Environ Res Public Health, 2021, 18(5): 2547. | [47] | Watts N, Adger WN, Ayeb-Karlsson S, et al. The Lancet countdown: tracking progress on health and climate change[J]. Lancet, 2017, 389(10074): 1151-1164. | [48] | World Health Organization. Operational framework for building climate resilient health systems[EB/OL]. (2015-06-10)[2023-05-11]. https://www.who.int/publications/i/item/9789241565073. | [49] | Wannous C. Climate change and other risk drivers of animal health and zoonotic disease emergencies: the need for a multidisciplinary and multisectoral approach to disaster risk management[J]. Rev Sci Tech, 2020, 39(2): 461-470. | [50] | Zinsstag J, Crump L, Schelling E, et al. Climate change and one health[J]. FEMS Microbiol Lett, 2018, 365(11): fny085. | [51] | El Zowalaty ME, J?rhult JD. From SARS to COVID-19: a previously unknown SARS-related coronavirus (SARS-CoV-2) of pandemic potential infecting humans-call for a One Health approach[J]. One Health, 2020, 9: 100124. | [52] | Seid MA, Yoseph LW, Befekadu UW, et al. Communication for the development of pastoralism[J]. Rev Sci Tech, 2016, 35(2): 639-648. | [53] | Weinstein RA. Planning for epidemics: the lessons of SARS[J]. N Engl J Med, 2004, 350(23): 2332-2334. | [54] | Eysenbach G. Infodemiology and infoveillance tracking online health information and cyberbehavior for public health[J]. Am J Prev Med, 2011, 40(5 Suppl 2): S154-S158. | [55] | Zhang XX, Liu JS, Han LF, et al. Towards a global One Health index: a potential assessment tool for One Health performance[J]. Infect Dis Poverty, 2022, 11(1): 57. | [56] | World Health Organization. Research priorities for zoonoses and marginalized infections[EB/OL]. (2012-09-10) [2023-05-11] https://apps.who.int/iris/handle/10665/75350. |
|