中国寄生虫学与寄生虫病杂志 ›› 2022, Vol. 40 ›› Issue (6): 691-700.doi: 10.12140/j.issn.1000-7423.2022.06.001
王晨曦1,2(), 陈福民1,2, 修乐山1,2, 胡沁沁1,2, 周晓农1,2,3, 郭晓奎1,2, 殷堃1,2(
)
收稿日期:
2022-07-29
修回日期:
2022-11-04
出版日期:
2022-12-30
发布日期:
2022-12-09
通讯作者:
殷堃
作者简介:
王晨曦(2000-),女,硕士研究生,从事全健康研究。E-mail:nelluwang@outlook.com
基金资助:
WANG Chen-xi1,2(), CHEN Fu-min1,2, XIU Le-shan1,2, HU Qin-qin1,2, ZHOU Xiao-nong1,2,3, GUO Xiao-kui1,2, YIN Kun1,2(
)
Received:
2022-07-29
Revised:
2022-11-04
Online:
2022-12-30
Published:
2022-12-09
Contact:
YIN Kun
Supported by:
摘要:
人兽共患病是全球重大公共卫生问题。近年来,人兽共患病在全球范围内频繁发生,严重威胁人类健康和生态安全。气候变化作为21世纪人类面临的最大挑战之一,是影响人兽共患病出现的重要驱动因素。预计未来全球平均气温将上升2~5 ℃,并伴随更加频繁、强烈的极端气候事件。温度、湿度等气候条件会影响人兽共患病的宿主、媒介及病原体的生存、繁殖、丰度和分布情况,而人类、动物和生态环境之间动态相互作用也增加了人兽共患病暴发的风险。本文就气候变化与人兽共患病的关系进行了讨论,探究如何构建高效的气候变化影响下人兽共患病风险预警体系,并将全健康理念用于人兽共患病溢出、传播及暴发的预警,以期实现对人兽共患病的高效防控。
中图分类号:
王晨曦, 陈福民, 修乐山, 胡沁沁, 周晓农, 郭晓奎, 殷堃. 基于全健康理念的气候变化下人兽共患病风险监测预警体系[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 691-700.
WANG Chen-xi, CHEN Fu-min, XIU Le-shan, HU Qin-qin, ZHOU Xiao-nong, GUO Xiao-kui, YIN Kun. Research on zoonosis surveillance and early warning system under climate change based on the concept of One Health[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(6): 691-700.
[1] | World Health Organization. Zoonoses[EB/OL]. (2020-07-29) [2022-11-04]. https://www.who.int/news-room/fact-sheets/detail/zoonoses. |
[2] |
Philippon DAM, Wu P, Cowling BJ, et al. Avian influenza human infections at the human-animal interface[J]. J Infect Dis, 2020, 222(4): 528-537.
doi: 10.1093/infdis/jiaa105 pmid: 32157291 |
[3] |
Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus[J]. Nature, 2009, 459(7249): 931-939.
doi: 10.1038/nature08157 |
[4] |
Chan JF, Lau SK, To KK, et al. Middle East respiratory syndrome coronavirus: another zoonotic Betacoronavirus causing SARS-like disease[J]. Clin Microbiol Rev, 2015, 28(2): 465-522.
doi: 10.1128/CMR.00102-14 |
[5] |
Yip CW, Hon CC, Shi M, et al. Phylogenetic perspectives on the epidemiology and origins of SARS and SARS-like coronaviruses[J]. Infect Genet Evol, 2009, 9(6): 1185-1196.
doi: 10.1016/j.meegid.2009.09.015 pmid: 19800030 |
[6] | Bakonyi T, Haussig JM. West Nile virus keeps on moving up in Europe[J]. Euro Surveill, 2020, 25(46): 2001938. |
[7] |
Monath TP, Vasconcelos PFC. Yellow fever[J]. J Clin Virol, 2015, 64: 160-173.
doi: 10.1016/j.jcv.2014.08.030 pmid: 25453327 |
[8] | Slenczka W. Zika virus disease[J]. Microbiol Spectr, 2016, 4(3): 163-173. |
[9] |
Karesh WB, Dobson A, Lloyd-Smith JO, et al. Ecology of zoonoses: natural and unnatural histories[J]. Lancet, 2012, 380(9857): 1936-1945.
doi: 10.1016/S0140-6736(12)61678-X pmid: 23200502 |
[10] | Morens DM, Fauci AS. Emerging infectious diseases in 2012: 20 years after the institute of medicine report[J]. mBio, 2012, 3(6): e00494-12. |
[11] |
Heymann DL, Chen L, Takemi K, et al. Global health security: the wider lessons from the west African Ebola virus disease epidemic[J]. Lancet, 2015, 385(9980): 1884-1901.
doi: 10.1016/S0140-6736(15)60858-3 pmid: 25987157 |
[12] |
El-Sayed A, Kamel M. Climatic changes and their role in emergence and re-emergence of diseases[J]. Environ Sci Pollut Res Int, 2020, 27(18): 22336-22352.
doi: 10.1007/s11356-020-08896-w |
[13] |
McMichael AJ. Insights from past millennia into climatic impacts on human health and survival[J]. Proc Natl Acad Sci USA, 2012, 109(13): 4730-4737.
doi: 10.1073/pnas.1120177109 pmid: 22315419 |
[14] |
Wheeler T, von Braun J. Climate change impacts on global food security[J]. Science, 2013, 341(6145): 508-513.
doi: 10.1126/science.1239402 pmid: 23908229 |
[15] |
Rulli MC, Santini M, Hayman DTS, et al. The Nexus between forest fragmentation in Africa and Ebola virus disease outbreaks[J]. Sci Rep, 2017, 7: 41613.
doi: 10.1038/srep41613 pmid: 28195145 |
[16] |
Carlson CJ, Albery GF, Merow C, et al. Climate change increases cross-species viral transmission risk[J]. Nature, 2022, 607(7919): 555-562.
doi: 10.1038/s41586-022-04788-w |
[17] | Naicker PR. The impact of climate change and other factors on zoonotic diseases[J]. Arch Clin Microbiol, 2011, 2(2): 4. |
[18] |
Naylor RL, Hardy RW, Buschmann AH, et al. A 20-year retrospective review of global aquaculture[J]. Nature, 2021, 591(7851): 551-563.
doi: 10.1038/s41586-021-03308-6 |
[19] | Rocque RJ, Beaudoin C, Ndjaboue R, et al. Health effects of climate change: an overview of systematic reviews[J]. BMJ Open, 2021, 11(6): e046333. |
[20] |
Watts N, Amann M, Arnell N, et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises[J]. Lancet, 2021, 397(10269): 129-170.
doi: 10.1016/S0140-6736(20)32290-X pmid: 33278353 |
[21] |
Kruse H, Kirkemo AM, Handeland K. Wildlife as source of zoonotic infections[J]. Emerg Infect Dis, 2004, 10(12): 2067-2072.
doi: 10.3201/eid1012.040707 pmid: 15663840 |
[22] | Magouras I, Brookes VJ, Jori F, et al. Emerging zoonotic diseases: should we rethink the animal-human interface?[J]. Front Vet Sci, 2020, 7: 582743. |
[23] |
Chen SC, Hsieh MH. Modeling the transmission dynamics of dengue fever: implications of temperature effects[J]. Sci Total Environ, 2012, 431: 385-391.
doi: 10.1016/j.scitotenv.2012.05.012 |
[24] |
Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases[J]. Lancet, 2012, 380(9857): 1946-1955.
doi: 10.1016/S0140-6736(12)61151-9 pmid: 23200503 |
[25] |
Rohr JR, Dobson AP, Johnson PTJ, et al. Frontiers in climate change-disease research[J]. Trends Ecol Evol, 2011, 26(6): 270-277.
doi: 10.1016/j.tree.2011.03.002 pmid: 21481487 |
[26] |
Tokarevich NK, Tronin AA, Blinova OV, et al. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia[J]. Glob Health Action, 2011, 4: 8448.
doi: 10.3402/gha.v4i0.8448 |
[27] |
Porretta D, Mastrantonio V, Amendolia S, et al. Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling[J]. Parasit Vectors, 2013, 6: 271.
doi: 10.1186/1756-3305-6-271 pmid: 24330500 |
[28] |
Hales S, de Wet N, Maindonald J, et al. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model[J]. Lancet, 2002, 360(9336): 830-834.
doi: 10.1016/S0140-6736(02)09964-6 pmid: 12243917 |
[29] |
Gilpin BJ, Walker T, Paine S, et al. A large scale waterborne campylobacteriosis outbreak, Havelock North, New Zealand[J]. J Infect, 2020, 81(3): 390-395.
doi: S0163-4453(20)30445-X pmid: 32610108 |
[30] |
Iwu CD, Iwu-Jaja CJ, Okoh AI, et al. Estimating the risk of acute gastrointestinal disease attributed to E. coli O157∶H7 in irrigation water and agricultural soil: a quantitative microbial risk assessment[J]. Sustainability, 2022, 14(3): 1878.
doi: 10.3390/su14031878 |
[31] |
Chhetri BK, Galanis E, Sobie S, et al. Projected local rain events due to climate change and the impacts on waterborne diseases in Vancouver, British Columbia, Canada[J]. Environ Health, 2019, 18(1): 116.
doi: 10.1186/s12940-019-0550-y |
[32] | Bierque E, Thibeaux R, Girault D, et al. A systematic review of Leptospira in water and soil environments[J]. PLoS One, 2020, 15(1): e0227055. |
[33] |
McMichael AJ, Woodruff RE, Hales S. Climate change and human health: present and future risks[J]. Lancet, 2006, 367(9513): 859-869.
doi: 10.1016/S0140-6736(06)68079-3 pmid: 16530580 |
[34] |
Sterk A, Schets FM, de Roda Husman AM, et al. Effect of climate change on the concentration and associated risks of Vibrio spp. in Dutch recreational waters[J]. Risk Anal, 2015, 35(9): 1717-1729.
doi: 10.1111/risa.12365 |
[35] |
McBride G, Tait A, Slaney D. Projected changes in reported campylobacteriosis and cryptosporidiosis rates as a function of climate change: a New Zealand study[J]. Stoch Environ Res Risk Assess, 2014, 28(8): 2133-2147.
doi: 10.1007/s00477-014-0920-5 |
[36] |
Kuhn KG, Nygård KM, Guzman-Herrador B, et al. Campylobacter infections expected to increase due to climate change in Northern Europe[J]. Sci Rep, 2020, 10(1): 13874.
doi: 10.1038/s41598-020-70593-y |
[37] |
Kovats RS, Edwards SJ, Hajat S, et al. The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries[J]. Epidemiol Infect, 2004, 132(3): 443-453.
pmid: 15188714 |
[38] |
Smith BA, Meadows S, Meyers R, et al. Seasonality and zoonotic foodborne pathogens in Canada: relationships between climate and Campylobacter, E. coli and Salmonella in meat products[J]. Epidemiol Infect, 2019, 147: e190.
doi: 10.1017/S0950268819000797 |
[39] |
Anyamba A, Chretien JP, Britch SC, et al. Global disease outbreaks associated with the 2015—2016 El Nio Event[J]. Sci Rep, 2019, 9(1): 1930.
doi: 10.1038/s41598-018-38034-z pmid: 30760757 |
[40] |
Sipari S, Khalil H, Magnusson M, et al. Climate change accelerates winter transmission of a zoonotic pathogen[J]. Ambio, 2022, 51(3): 508-517.
doi: 10.1007/s13280-021-01594-y |
[41] |
Ben Ari T, Gershunov A, Gage KL, et al. Human plague in the USA: the importance of regional and local climate[J]. Biol Lett, 2008, 4(6): 737-740.
doi: 10.1098/rsbl.2008.0363 |
[42] |
Stenseth NC, Samia NI, Viljugrein H, et al. Plague dynamics are driven by climate variation[J]. Proc Natl Acad Sci USA, 2006, 103(35): 13110-13115.
pmid: 16924109 |
[43] |
Holt AC, Salkeld DJ, Fritz CL, et al. Spatial analysis of plague in California: Niche modeling predictions of the current distribution and potential response to climate change[J]. Int J Health Geogr, 2009, 8: 38.
doi: 10.1186/1476-072X-8-38 pmid: 19558717 |
[44] | Marini G, Rizzoli A, Tagliapietra V. Predicting rodent population dynamics as early warning for zoonotic disease transmission[J]. Int J Infect Dis, 2022, 116: S70. |
[45] |
Ford TE, Colwell RR, Rose JB, et al. Using satellite images of environmental changes to predict infectious disease outbreaks[J]. Emerg Infect Dis, 2009, 15(9): 1341-1346.
doi: 10.3201/eid1509.081334 pmid: 19788799 |
[46] |
Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Mol Ecol, 2016, 25(4): 929-942.
doi: 10.1111/mec.13428 pmid: 26479867 |
[47] |
Bohmann K, Evans A, Gilbert MTP, et al. Environmental DNA for wildlife biology and biodiversity monitoring[J]. Trends Ecol Evol, 2014, 29(6): 358-367.
doi: 10.1016/j.tree.2014.04.003 pmid: 24821515 |
[48] | Berry TE, Saunders BJ, Coghlan ML, et al. Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events[J]. PLoS Genet, 2019, 15(2): e1007943. |
[49] |
Bass D, Stentiford GD, Littlewood DTJ, et al. Diverse applications of environmental DNA methods in parasitology[J]. Trends Parasitol, 2015, 31(10): 499-513.
doi: S1471-4922(15)00150-6 pmid: 26433253 |
[50] |
Lipkin WI. The changing face of pathogen discovery and surveillance[J]. Nat Rev Microbiol, 2013, 11(2): 133-141.
doi: 10.1038/nrmicro2949 pmid: 23268232 |
[51] |
Morse SS, Mazet JAK, Woolhouse M, et al. Prediction and prevention of the next pandemic zoonosis[J]. Lancet, 2012, 380(9857): 1956-1965.
doi: 10.1016/S0140-6736(12)61684-5 pmid: 23200504 |
[52] |
Relman DA. Microbial genomics and infectious diseases[J]. N Engl J Med, 2011, 365(4): 347-357.
doi: 10.1056/NEJMra1003071 |
[53] |
Parrish CR, Holmes EC, Morens DM, et al. Cross-species virus transmission and the emergence of new epidemic diseases[J]. Microbiol Mol Biol Rev, 2008, 72(3): 457-470.
doi: 10.1128/MMBR.00004-08 |
[54] |
Min L, Zhao SG, Tian H, et al. Metabolic responses and “omics” technologies for elucidating the effects of heat stress in dairy cows[J]. Int J Biometeorol, 2017, 61(6):1149-1158.
doi: 10.1007/s00484-016-1283-z pmid: 27904969 |
[55] | Sun BJ, Williams CM, Li T, et al. Higher metabolic plasticity in temperate compared to tropical lizards suggests increased resilience to climate change[J]. Ecol Monogr, 2022, 92(2): e1512. |
[56] |
Ye P. Remote sensing approaches for meteorological disaster monitoring: recent achievements and new challenges[J]. Int J Environ Res Public Health, 2022, 19(6): 3701.
doi: 10.3390/ijerph19063701 |
[57] |
Im J, Park H, Takeuchi W. Advances in remote sensing-based disaster monitoring and assessment[J]. Remote Sens, 2019, 11(18): 2181.
doi: 10.3390/rs11182181 |
[58] |
Huang W, Bu M. Detecting shadows in high-resolution remote-sensing images of urban areas using spectral and spatial features[J]. Int J Remote Sens, 2015, 36(24): 6224-6244.
doi: 10.1080/01431161.2015.1113329 |
[59] |
Giordan D, Hayakawa Y, Nex F, et al. Review article: the use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management[J]. Nat Hazards Earth Syst Sci, 2018, 18(4): 1079-1096.
doi: 10.5194/nhess-18-1079-2018 |
[60] |
Kuenzer C, Ottinger M, Wegmann M, et al. Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks[J]. Int J Remote Sens, 2014, 35(18): 6599-6647.
doi: 10.1080/01431161.2014.964349 |
[61] |
Brown DD, LaPoint S, Kays R, et al. Accelerometer-informed GPS telemetry: reducing the trade-off between resolution and longevity[J]. Wildl Soc Bull, 2012, 36(1): 139-146.
doi: 10.1002/wsb.111 |
[62] |
Kranstauber B, Cameron A, Weinzerl R, et al. The Movebank data model for animal tracking[J]. Environ Model Softw, 2011, 26(6): 834-835.
doi: 10.1016/j.envsoft.2010.12.005 |
[63] |
Dell AI, Bender JA, Branson K, et al. Automated image-based tracking and its application in ecology[J]. Trends Ecol Evol, 2014, 29(7): 417-428.
doi: 10.1016/j.tree.2014.05.004 pmid: 24908439 |
[64] | Duncan C, Kretz D, Wegmann M, et al. Oil in the Sahara: mapping anthropogenic threats to Saharan biodiversity from space[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1643): 20130191. |
[65] |
Benali A, Nunes JP, Freitas FB, et al. Satellite-derived estimation of environmental suitability for malaria vector development in Portugal[J]. Remote Sens Environ, 2014, 145: 116-130.
doi: 10.1016/j.rse.2014.01.014 |
[66] |
Thomsen PF, Willerslev E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity[J]. Biol Conserv, 2015, 183: 4-18.
doi: 10.1016/j.biocon.2014.11.019 |
[67] |
Bohmann K, Gopalakrishnan S, Nielsen M, et al. Using DNA metabarcoding for simultaneous inference of common vampire bat diet and population structure[J]. Mol Ecol Resour, 2018, 18(5): 1050-1063.
doi: 10.1111/1755-0998.12891 |
[68] |
Casanovas-Massana A, de Oliveira D, Schneider AG, et al. Genetic evidence for a potential environmental pathway to spillover infection of rat-borne leptospirosis[J]. J Infect Dis, 2022, 225(1): 130-134.
doi: 10.1093/infdis/jiab323 |
[69] |
Sato Y, Mizuyama M, Sato M, et al. Environmental DNA metabarcoding to detect pathogenic Leptospira and associated organisms in leptospirosis-endemic areas of Japan[J]. Sci Rep, 2019, 9(1): 6575.
doi: 10.1038/s41598-019-42978-1 pmid: 31024059 |
[70] |
Nieuwenhuijse DF, Koopmans MPG. Metagenomic sequencing for surveillance of food- and waterborne viral diseases[J]. Front Microbiol, 2017, 8: 230.
doi: 10.3389/fmicb.2017.00230 pmid: 28261185 |
[71] |
Arias A, Watson SJ, Asogun D, et al. Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases[J]. Virus Evol, 2016, 2(1): vew016.
doi: 10.1093/ve/vew016 |
[72] | Cantalupo PG, Calgua B, Zhao GY, et al. Raw sewage harbors diverse viral populations[J]. mBio, 2011, 2(5): e00180-e00111. |
[73] |
Gu XQ, Tay QXM, Te SH, et al. Geospatial distribution of viromes in tropical freshwater ecosystems[J]. Water Res, 2018, 137: 220-232.
doi: S0043-1354(18)30213-6 pmid: 29550725 |
[74] |
Pagenkopp Lohan KM, Fleischer RC, Carney KJ, et al. Amplicon-based pyrosequencing reveals high diversity of protistan parasites in ships’ ballast water: implications for biogeography and infectious diseases[J]. Microb Ecol, 2016, 71(3): 530-542.
doi: 10.1007/s00248-015-0684-6 pmid: 26476551 |
[75] |
Dumonteil E, Ramirez-Sierra MJ, Pérez-Carrillo S, et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles[J]. Sci Rep, 2018, 8(1): 4140.
doi: 10.1038/s41598-018-22455-x pmid: 29515202 |
[76] |
Fitzpatrick MJ, Edelsparre AH. The genomics of climate change[J]. Science, 2018, 359(6371): 29-30.
doi: 10.1126/science.aar3920 pmid: 29301999 |
[77] |
Berthet N, Descorps-Declère S, Besombes C, et al. Genomic history of human monkey pox infections in the Central African Republic between 2001 and 2018[J]. Sci Rep, 2021, 11(1): 13085.
doi: 10.1038/s41598-021-92315-8 pmid: 34158533 |
[78] |
Gulia-Nuss M, Nuss AB, Meyer JM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease[J]. Nat Commun, 2016, 7: 10507.
doi: 10.1038/ncomms10507 pmid: 26856261 |
[79] | de la Fuente J, Waterhouse RM, Sonenshine DE, et al. Tick genome assembled: new opportunities for research on tick-host-pathogen interactions[J]. Front Cell Infect Microbiol, 2016, 6: 103. |
[80] |
Bay RA, Harrigan RJ, Underwood VL, et al. Genomic signals of selection predict climate-driven population declines in a migratory bird[J]. Science, 2018, 359(6371): 83-86.
doi: 10.1126/science.aan4380 pmid: 29302012 |
[81] |
Bludau I, Aebersold R. Proteomic and interactomic insights into the molecular basis of cell functional diversity[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 327-340.
doi: 10.1038/s41580-020-0231-2 |
Bludau I, Aebersold R. Proteomic and interactomic insights into the molecular basis of cell functional diversity[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 327-340. | |
[82] | Sun H, Li J, Wang LJ, et al. Comparative proteomics analysis for elucidating the interaction between host cells and Toxoplasma gondii[J]. Front Cell Infect Microbiol, 2021, 11: 643001. |
[83] |
Abraham R, Mudaliar P, Jaleel A, et al. High throughput proteomic analysis and a comparative review identify the nuclear chaperone, nucleophosmin among the common set of proteins modulated in Chikungunya virus infection[J]. J Proteomics, 2015, 120: 126-141.
doi: 10.1016/j.jprot.2015.03.007 pmid: 25782748 |
[84] |
Christaki E. New technologies in predicting, preventing and controlling emerging infectious diseases[J]. Virulence, 2015, 6(6): 558-565.
doi: 10.1080/21505594.2015.1040975 pmid: 26068569 |
[85] |
Ajelli M, Gonçalves B, Balcan D, et al. Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models[J]. BMC Infect Dis, 2010, 10: 190.
doi: 10.1186/1471-2334-10-190 pmid: 20587041 |
[86] | Hussain-Alkhateeb L, Rivera Ramírez T, Kroeger A, et al. Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: what is the evidence? A scoping review[J]. PLoS Negl Trop Dis, 2021, 15(9): e0009686. |
[87] | Southall E, Brett TS, Tildesley MJ, et al. Early warning signals of infectious disease transitions: a review[J]. J R Soc Interface, 2021, 18(182): 20210555. |
[88] | Alonso D, Bouma MJ, Pascual M. Epidemic malaria and warmer temperatures in recent decades in an East African highland[J]. Proc Biol Sci, 2011, 278(1712): 1661-1669. |
[89] |
Xiang J, Hansen A, Liu Q, et al. Association between malaria incidence and meteorological factors: a multi-location study in China, 2005—2012[J]. Epidemiol Infect, 2018, 146(1): 89-99.
doi: 10.1017/S0950268817002254 pmid: 29248024 |
[90] |
Cohen JM, Venesky MD, Sauer EL, et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease[J]. Ecol Lett, 2017, 20(2): 184-193.
doi: 10.1111/ele.12720 pmid: 28111904 |
[91] |
Lafferty KD, Mordecai EA. The rise and fall of infectious disease in a warmer world[J]. F1000Res, 2016, 5: 2040.
doi: 10.12688/f1000research.8766.1 |
[92] |
Burge CA, Mark Eakin C, Friedman CS, et al. Climate change influences on marine infectious diseases: implications for management and society[J]. Ann Rev Mar Sci, 2014, 6: 249-277.
doi: 10.1146/annurev-marine-010213-135029 |
[93] |
Moritz C, Agudo R. The future of species under climate change: resilience or decline?[J]. Science, 2013, 341(6145): 504-508.
doi: 10.1126/science.1237190 pmid: 23908228 |
[94] |
Altizer S, Ostfeld RS, Johnson PTJ, et al. Climate change and infectious diseases: from evidence to a predictive framework[J]. Science, 2013, 341(6145): 514-519.
doi: 10.1126/science.1239401 pmid: 23908230 |
[95] |
Brown JH, Gillooly JF, Allen AP, et al. Toward a metabolic theory of ecology[J]. Ecology, 2004, 85(7): 1771-1789.
doi: 10.1890/03-9000 |
[96] |
Molnár PK, Kutz SJ, Hoar BM, et al. Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics[J]. Ecol Lett, 2013, 16(1): 9-21.
doi: 10.1111/ele.12022 pmid: 23157563 |
[97] | Bernstein AS, Ando AW, Loch-Temzelides T, et al. The costs and benefits of primary prevention of zoonotic pandemics[J]. Sci Adv, 2022, 8(5): eabl4183. |
[98] |
Métras R, Collins LM, White RG, et al. Rift Valley fever epidemiology, surveillance, and control: what have models contributed?[J]. Vector Borne Zoonotic Dis, 2011, 11(6): 761-771.
doi: 10.1089/vbz.2010.0200 pmid: 21548763 |
[99] |
Wu Y, Ling F, Hou J, et al. Will integrated surveillance systems for vectors and vector-borne diseases be the future of controlling vector-borne diseases? A practical example from China[J]. Epidemiol Infect, 2016, 144(9): 1895-1903.
doi: 10.1017/S0950268816000297 pmid: 26899818 |
[100] |
Oeschger TM, McCloskey DS, Buchmann RM, et al. Early warning diagnostics for emerging infectious diseases in developing into late-stage pandemics[J]. Acc Chem Res, 2021, 54(19): 3656-3666.
doi: 10.1021/acs.accounts.1c00383 |
[101] |
Zhang XX, Liu JS, Han LF, et al. Towards a global One Health index: a potential assessment tool for One Health performance[J]. Infect Dis Poverty, 2022, 11: 57.
doi: 10.1186/s40249-022-00979-9 |
[102] | Kavulikirwa OK, Sikakulya FK. Recurrent Ebola outbreaks in the eastern Democratic Republic of the Congo: a wake-up call to scale up the integrated disease surveillance and response strategy[J]. One Health, 2022, 14: 100379. |
[103] |
Leandro AS, Lopes RD, et al. Citywide integrated Aedes aegypti mosquito surveillance as early warning system for arbovirus transmission, Brazil[J]. Emerg Infect Dis, 2022, 28(4): 701-706.
doi: 10.3201/eid2804.211547 pmid: 35318912 |
[104] |
Erkyihun GA, Gari FR, Edao BM, et al. A review on One Health approach in Ethiopia[J]. One Health Outlook, 2022, 4(1): 8.
doi: 10.1186/s42522-022-00064-z pmid: 35449083 |
[105] |
He JY, Guo ZY, Yang P, et al. Social insights on the implementation of One Health in zoonosis prevention and control: a scoping review[J]. Infect Dis Poverty, 2022, 11: 48.
doi: 10.1186/s40249-022-00976-y pmid: 35505361 |
[1] | 费思伟, 赵翰卿, 尹静娴, 孙芷珊, 郭晓奎, KASSEGNE Kokouvi, 周晓农. 基于文献计量分析的蜱及蜱传疾病研究领域发展趋势[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 609-618. |
[2] | 晁安琪, 李慧敏, 胡沁沁, 周晓农, 郭晓奎, 殷堃. 基于全健康理念的气候变化下人兽共患病防控策略[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 263-269. |
[3] | 陈琳, 朱继峰, 邱竞帆, 徐志鹏, 张东辉, 陈璐, 何健, 李伟, 杨坤, 季旻珺. 寓全健康理念于血吸虫病防控虚拟仿真项目建设[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 81-84. |
[4] | 李慧敏, 刘婧姝, 王希涵, 赵翰卿, 解艺, 尹静娴, 吕超, 周楠, 蒋天哥, 谷思雨, 殷堃, 周晓农, 郭晓奎, 胡沁沁. 基于全健康理念的新发传染病综合监测预警体系:结构与创新[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 572-578. |
[5] | 李真, 郭晓奎, 王月祥, 郑彬, 周晓农. 基于SWOT分析的中国全健康发展策略研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 271-277. |
[6] | 刘婧姝, 张晓溪, 郭晓奎. 全健康的起源、内涵及展望[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 1-11. |
[7] | 周晓农. 以全健康理念推进人兽共患病预防与控制[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 12-19. |
[8] | 普丽花, 张兴泽, 关少君, 程文杰, 邹丰才, 毛华明, 杨建发. 云南省奶牛芽囊原虫的感染情况及其基因亚型分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 809-815. |
[9] | 汪天平*. 人兽共患寄生虫病的流行与防控[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(6): 14-472-476. |
[10] | 钱颖骏, 李石柱, 徐俊芳, 张丽, 付青, 周晓农. 气候变化对血吸虫病与疟疾传播影响的适应政策指标的建立[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(6): 4-433-437. |
[11] | 刘述先. 加强人兽共患病研究势在必行[J]. 中国寄生虫学与寄生虫病杂志, 2003, 21(4): 18-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||