[1] | World Health Organization. Zoonoses[EB/OL]. (2020-07-29) [2022-11-04]. https://www.who.int/news-room/fact-sheets/detail/zoonoses. | [2] | Philippon DAM, Wu P, Cowling BJ, et al. Avian influenza human infections at the human-animal interface[J]. J Infect Dis, 2020, 222(4): 528-537. | [3] | Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus[J]. Nature, 2009, 459(7249): 931-939. | [4] | Chan JF, Lau SK, To KK, et al. Middle East respiratory syndrome coronavirus: another zoonotic Betacoronavirus causing SARS-like disease[J]. Clin Microbiol Rev, 2015, 28(2): 465-522. | [5] | Yip CW, Hon CC, Shi M, et al. Phylogenetic perspectives on the epidemiology and origins of SARS and SARS-like coronaviruses[J]. Infect Genet Evol, 2009, 9(6): 1185-1196. | [6] | Bakonyi T, Haussig JM. West Nile virus keeps on moving up in Europe[J]. Euro Surveill, 2020, 25(46): 2001938. | [7] | Monath TP, Vasconcelos PFC. Yellow fever[J]. J Clin Virol, 2015, 64: 160-173. | [8] | Slenczka W. Zika virus disease[J]. Microbiol Spectr, 2016, 4(3): 163-173. | [9] | Karesh WB, Dobson A, Lloyd-Smith JO, et al. Ecology of zoonoses: natural and unnatural histories[J]. Lancet, 2012, 380(9857): 1936-1945. | [10] | Morens DM, Fauci AS. Emerging infectious diseases in 2012: 20 years after the institute of medicine report[J]. mBio, 2012, 3(6): e00494-12. | [11] | Heymann DL, Chen L, Takemi K, et al. Global health security: the wider lessons from the west African Ebola virus disease epidemic[J]. Lancet, 2015, 385(9980): 1884-1901. | [12] | El-Sayed A, Kamel M. Climatic changes and their role in emergence and re-emergence of diseases[J]. Environ Sci Pollut Res Int, 2020, 27(18): 22336-22352. | [13] | McMichael AJ. Insights from past millennia into climatic impacts on human health and survival[J]. Proc Natl Acad Sci USA, 2012, 109(13): 4730-4737. | [14] | Wheeler T, von Braun J. Climate change impacts on global food security[J]. Science, 2013, 341(6145): 508-513. | [15] | Rulli MC, Santini M, Hayman DTS, et al. The Nexus between forest fragmentation in Africa and Ebola virus disease outbreaks[J]. Sci Rep, 2017, 7: 41613. | [16] | Carlson CJ, Albery GF, Merow C, et al. Climate change increases cross-species viral transmission risk[J]. Nature, 2022, 607(7919): 555-562. | [17] | Naicker PR. The impact of climate change and other factors on zoonotic diseases[J]. Arch Clin Microbiol, 2011, 2(2): 4. | [18] | Naylor RL, Hardy RW, Buschmann AH, et al. A 20-year retrospective review of global aquaculture[J]. Nature, 2021, 591(7851): 551-563. | [19] | Rocque RJ, Beaudoin C, Ndjaboue R, et al. Health effects of climate change: an overview of systematic reviews[J]. BMJ Open, 2021, 11(6): e046333. | [20] | Watts N, Amann M, Arnell N, et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises[J]. Lancet, 2021, 397(10269): 129-170. | [21] | Kruse H, Kirkemo AM, Handeland K. Wildlife as source of zoonotic infections[J]. Emerg Infect Dis, 2004, 10(12): 2067-2072. | [22] | Magouras I, Brookes VJ, Jori F, et al. Emerging zoonotic diseases: should we rethink the animal-human interface?[J]. Front Vet Sci, 2020, 7: 582743. | [23] | Chen SC, Hsieh MH. Modeling the transmission dynamics of dengue fever: implications of temperature effects[J]. Sci Total Environ, 2012, 431: 385-391. | [24] | Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases[J]. Lancet, 2012, 380(9857): 1946-1955. | [25] | Rohr JR, Dobson AP, Johnson PTJ, et al. Frontiers in climate change-disease research[J]. Trends Ecol Evol, 2011, 26(6): 270-277. | [26] | Tokarevich NK, Tronin AA, Blinova OV, et al. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia[J]. Glob Health Action, 2011, 4: 8448. | [27] | Porretta D, Mastrantonio V, Amendolia S, et al. Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling[J]. Parasit Vectors, 2013, 6: 271. | [28] | Hales S, de Wet N, Maindonald J, et al. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model[J]. Lancet, 2002, 360(9336): 830-834. | [29] | Gilpin BJ, Walker T, Paine S, et al. A large scale waterborne campylobacteriosis outbreak, Havelock North, New Zealand[J]. J Infect, 2020, 81(3): 390-395. | [30] | Iwu CD, Iwu-Jaja CJ, Okoh AI, et al. Estimating the risk of acute gastrointestinal disease attributed to E. coli O157∶H7 in irrigation water and agricultural soil: a quantitative microbial risk assessment[J]. Sustainability, 2022, 14(3): 1878. | [31] | Chhetri BK, Galanis E, Sobie S, et al. Projected local rain events due to climate change and the impacts on waterborne diseases in Vancouver, British Columbia, Canada[J]. Environ Health, 2019, 18(1): 116. | [32] | Bierque E, Thibeaux R, Girault D, et al. A systematic review of Leptospira in water and soil environments[J]. PLoS One, 2020, 15(1): e0227055. | [33] | McMichael AJ, Woodruff RE, Hales S. Climate change and human health: present and future risks[J]. Lancet, 2006, 367(9513): 859-869. | [34] | Sterk A, Schets FM, de Roda Husman AM, et al. Effect of climate change on the concentration and associated risks of Vibrio spp. in Dutch recreational waters[J]. Risk Anal, 2015, 35(9): 1717-1729. | [35] | McBride G, Tait A, Slaney D. Projected changes in reported campylobacteriosis and cryptosporidiosis rates as a function of climate change: a New Zealand study[J]. Stoch Environ Res Risk Assess, 2014, 28(8): 2133-2147. | [36] | Kuhn KG, Nyg?rd KM, Guzman-Herrador B, et al. Campylobacter infections expected to increase due to climate change in Northern Europe[J]. Sci Rep, 2020, 10(1): 13874. | [37] | Kovats RS, Edwards SJ, Hajat S, et al. The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries[J]. Epidemiol Infect, 2004, 132(3): 443-453. | [38] | Smith BA, Meadows S, Meyers R, et al. Seasonality and zoonotic foodborne pathogens in Canada: relationships between climate and Campylobacter, E. coli and Salmonella in meat products[J]. Epidemiol Infect, 2019, 147: e190. | [39] | Anyamba A, Chretien JP, Britch SC, et al. Global disease outbreaks associated with the 2015—2016 El Nio Event[J]. Sci Rep, 2019, 9(1): 1930. | [40] | Sipari S, Khalil H, Magnusson M, et al. Climate change accelerates winter transmission of a zoonotic pathogen[J]. Ambio, 2022, 51(3): 508-517. | [41] | Ben Ari T, Gershunov A, Gage KL, et al. Human plague in the USA: the importance of regional and local climate[J]. Biol Lett, 2008, 4(6): 737-740. | [42] | Stenseth NC, Samia NI, Viljugrein H, et al. Plague dynamics are driven by climate variation[J]. Proc Natl Acad Sci USA, 2006, 103(35): 13110-13115. | [43] | Holt AC, Salkeld DJ, Fritz CL, et al. Spatial analysis of plague in California: Niche modeling predictions of the current distribution and potential response to climate change[J]. Int J Health Geogr, 2009, 8: 38. | [44] | Marini G, Rizzoli A, Tagliapietra V. Predicting rodent population dynamics as early warning for zoonotic disease transmission[J]. Int J Infect Dis, 2022, 116: S70. | [45] | Ford TE, Colwell RR, Rose JB, et al. Using satellite images of environmental changes to predict infectious disease outbreaks[J]. Emerg Infect Dis, 2009, 15(9): 1341-1346. | [46] | Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Mol Ecol, 2016, 25(4): 929-942. | [47] | Bohmann K, Evans A, Gilbert MTP, et al. Environmental DNA for wildlife biology and biodiversity monitoring[J]. Trends Ecol Evol, 2014, 29(6): 358-367. | [48] | Berry TE, Saunders BJ, Coghlan ML, et al. Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events[J]. PLoS Genet, 2019, 15(2): e1007943. | [49] | Bass D, Stentiford GD, Littlewood DTJ, et al. Diverse applications of environmental DNA methods in parasitology[J]. Trends Parasitol, 2015, 31(10): 499-513. | [50] | Lipkin WI. The changing face of pathogen discovery and surveillance[J]. Nat Rev Microbiol, 2013, 11(2): 133-141. | [51] | Morse SS, Mazet JAK, Woolhouse M, et al. Prediction and prevention of the next pandemic zoonosis[J]. Lancet, 2012, 380(9857): 1956-1965. | [52] | Relman DA. Microbial genomics and infectious diseases[J]. N Engl J Med, 2011, 365(4): 347-357. | [53] | Parrish CR, Holmes EC, Morens DM, et al. Cross-species virus transmission and the emergence of new epidemic diseases[J]. Microbiol Mol Biol Rev, 2008, 72(3): 457-470. | [54] | Min L, Zhao SG, Tian H, et al. Metabolic responses and “omics” technologies for elucidating the effects of heat stress in dairy cows[J]. Int J Biometeorol, 2017, 61(6):1149-1158. | [55] | Sun BJ, Williams CM, Li T, et al. Higher metabolic plasticity in temperate compared to tropical lizards suggests increased resilience to climate change[J]. Ecol Monogr, 2022, 92(2): e1512. | [56] | Ye P. Remote sensing approaches for meteorological disaster monitoring: recent achievements and new challenges[J]. Int J Environ Res Public Health, 2022, 19(6): 3701. | [57] | Im J, Park H, Takeuchi W. Advances in remote sensing-based disaster monitoring and assessment[J]. Remote Sens, 2019, 11(18): 2181. | [58] | Huang W, Bu M. Detecting shadows in high-resolution remote-sensing images of urban areas using spectral and spatial features[J]. Int J Remote Sens, 2015, 36(24): 6224-6244. | [59] | Giordan D, Hayakawa Y, Nex F, et al. Review article: the use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management[J]. Nat Hazards Earth Syst Sci, 2018, 18(4): 1079-1096. | [60] | Kuenzer C, Ottinger M, Wegmann M, et al. Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks[J]. Int J Remote Sens, 2014, 35(18): 6599-6647. | [61] | Brown DD, LaPoint S, Kays R, et al. Accelerometer-informed GPS telemetry: reducing the trade-off between resolution and longevity[J]. Wildl Soc Bull, 2012, 36(1): 139-146. | [62] | Kranstauber B, Cameron A, Weinzerl R, et al. The Movebank data model for animal tracking[J]. Environ Model Softw, 2011, 26(6): 834-835. | [63] | Dell AI, Bender JA, Branson K, et al. Automated image-based tracking and its application in ecology[J]. Trends Ecol Evol, 2014, 29(7): 417-428. | [64] | Duncan C, Kretz D, Wegmann M, et al. Oil in the Sahara: mapping anthropogenic threats to Saharan biodiversity from space[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1643): 20130191. | [65] | Benali A, Nunes JP, Freitas FB, et al. Satellite-derived estimation of environmental suitability for malaria vector development in Portugal[J]. Remote Sens Environ, 2014, 145: 116-130. | [66] | Thomsen PF, Willerslev E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity[J]. Biol Conserv, 2015, 183: 4-18. | [67] | Bohmann K, Gopalakrishnan S, Nielsen M, et al. Using DNA metabarcoding for simultaneous inference of common vampire bat diet and population structure[J]. Mol Ecol Resour, 2018, 18(5): 1050-1063. | [68] | Casanovas-Massana A, de Oliveira D, Schneider AG, et al. Genetic evidence for a potential environmental pathway to spillover infection of rat-borne leptospirosis[J]. J Infect Dis, 2022, 225(1): 130-134. | [69] | Sato Y, Mizuyama M, Sato M, et al. Environmental DNA metabarcoding to detect pathogenic Leptospira and associated organisms in leptospirosis-endemic areas of Japan[J]. Sci Rep, 2019, 9(1): 6575. | [70] | Nieuwenhuijse DF, Koopmans MPG. Metagenomic sequencing for surveillance of food- and waterborne viral diseases[J]. Front Microbiol, 2017, 8: 230. | [71] | Arias A, Watson SJ, Asogun D, et al. Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases[J]. Virus Evol, 2016, 2(1): vew016. | [72] | Cantalupo PG, Calgua B, Zhao GY, et al. Raw sewage harbors diverse viral populations[J]. mBio, 2011, 2(5): e00180-e00111. | [73] | Gu XQ, Tay QXM, Te SH, et al. Geospatial distribution of viromes in tropical freshwater ecosystems[J]. Water Res, 2018, 137: 220-232. | [74] | Pagenkopp Lohan KM, Fleischer RC, Carney KJ, et al. Amplicon-based pyrosequencing reveals high diversity of protistan parasites in ships’ ballast water: implications for biogeography and infectious diseases[J]. Microb Ecol, 2016, 71(3): 530-542. | [75] | Dumonteil E, Ramirez-Sierra MJ, Pérez-Carrillo S, et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles[J]. Sci Rep, 2018, 8(1): 4140. | [76] | Fitzpatrick MJ, Edelsparre AH. The genomics of climate change[J]. Science, 2018, 359(6371): 29-30. | [77] | Berthet N, Descorps-Declère S, Besombes C, et al. Genomic history of human monkey pox infections in the Central African Republic between 2001 and 2018[J]. Sci Rep, 2021, 11(1): 13085. | [78] | Gulia-Nuss M, Nuss AB, Meyer JM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease[J]. Nat Commun, 2016, 7: 10507. | [79] | de la Fuente J, Waterhouse RM, Sonenshine DE, et al. Tick genome assembled: new opportunities for research on tick-host-pathogen interactions[J]. Front Cell Infect Microbiol, 2016, 6: 103. | [80] | Bay RA, Harrigan RJ, Underwood VL, et al. Genomic signals of selection predict climate-driven population declines in a migratory bird[J]. Science, 2018, 359(6371): 83-86. | [81] | Bludau I, Aebersold R. Proteomic and interactomic insights into the molecular basis of cell functional diversity[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 327-340. | | Bludau I, Aebersold R. Proteomic and interactomic insights into the molecular basis of cell functional diversity[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 327-340. | [82] | Sun H, Li J, Wang LJ, et al. Comparative proteomics analysis for elucidating the interaction between host cells and Toxoplasma gondii[J]. Front Cell Infect Microbiol, 2021, 11: 643001. | [83] | Abraham R, Mudaliar P, Jaleel A, et al. High throughput proteomic analysis and a comparative review identify the nuclear chaperone, nucleophosmin among the common set of proteins modulated in Chikungunya virus infection[J]. J Proteomics, 2015, 120: 126-141. | [84] | Christaki E. New technologies in predicting, preventing and controlling emerging infectious diseases[J]. Virulence, 2015, 6(6): 558-565. | [85] | Ajelli M, Gon?alves B, Balcan D, et al. Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models[J]. BMC Infect Dis, 2010, 10: 190. | [86] | Hussain-Alkhateeb L, Rivera Ramírez T, Kroeger A, et al. Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: what is the evidence? A scoping review[J]. PLoS Negl Trop Dis, 2021, 15(9): e0009686. | [87] | Southall E, Brett TS, Tildesley MJ, et al. Early warning signals of infectious disease transitions: a review[J]. J R Soc Interface, 2021, 18(182): 20210555. | [88] | Alonso D, Bouma MJ, Pascual M. Epidemic malaria and warmer temperatures in recent decades in an East African highland[J]. Proc Biol Sci, 2011, 278(1712): 1661-1669. | [89] | Xiang J, Hansen A, Liu Q, et al. Association between malaria incidence and meteorological factors: a multi-location study in China, 2005—2012[J]. Epidemiol Infect, 2018, 146(1): 89-99. | [90] | Cohen JM, Venesky MD, Sauer EL, et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease[J]. Ecol Lett, 2017, 20(2): 184-193. | [91] | Lafferty KD, Mordecai EA. The rise and fall of infectious disease in a warmer world[J]. F1000Res, 2016, 5: 2040. | [92] | Burge CA, Mark Eakin C, Friedman CS, et al. Climate change influences on marine infectious diseases: implications for management and society[J]. Ann Rev Mar Sci, 2014, 6: 249-277. | [93] | Moritz C, Agudo R. The future of species under climate change: resilience or decline?[J]. Science, 2013, 341(6145): 504-508. | [94] | Altizer S, Ostfeld RS, Johnson PTJ, et al. Climate change and infectious diseases: from evidence to a predictive framework[J]. Science, 2013, 341(6145): 514-519. | [95] | Brown JH, Gillooly JF, Allen AP, et al. Toward a metabolic theory of ecology[J]. Ecology, 2004, 85(7): 1771-1789. | [96] | Molnár PK, Kutz SJ, Hoar BM, et al. Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics[J]. Ecol Lett, 2013, 16(1): 9-21. | [97] | Bernstein AS, Ando AW, Loch-Temzelides T, et al. The costs and benefits of primary prevention of zoonotic pandemics[J]. Sci Adv, 2022, 8(5): eabl4183. | [98] | Métras R, Collins LM, White RG, et al. Rift Valley fever epidemiology, surveillance, and control: what have models contributed?[J]. Vector Borne Zoonotic Dis, 2011, 11(6): 761-771. | [99] | Wu Y, Ling F, Hou J, et al. Will integrated surveillance systems for vectors and vector-borne diseases be the future of controlling vector-borne diseases? A practical example from China[J]. Epidemiol Infect, 2016, 144(9): 1895-1903. | [100] | Oeschger TM, McCloskey DS, Buchmann RM, et al. Early warning diagnostics for emerging infectious diseases in developing into late-stage pandemics[J]. Acc Chem Res, 2021, 54(19): 3656-3666. | [101] | Zhang XX, Liu JS, Han LF, et al. Towards a global One Health index: a potential assessment tool for One Health performance[J]. Infect Dis Poverty, 2022, 11: 57. | [102] | Kavulikirwa OK, Sikakulya FK. Recurrent Ebola outbreaks in the eastern Democratic Republic of the Congo: a wake-up call to scale up the integrated disease surveillance and response strategy[J]. One Health, 2022, 14: 100379. | [103] | Leandro AS, Lopes RD, et al. Citywide integrated Aedes aegypti mosquito surveillance as early warning system for arbovirus transmission, Brazil[J]. Emerg Infect Dis, 2022, 28(4): 701-706. | [104] | Erkyihun GA, Gari FR, Edao BM, et al. A review on One Health approach in Ethiopia[J]. One Health Outlook, 2022, 4(1): 8. | [105] | He JY, Guo ZY, Yang P, et al. Social insights on the implementation of One Health in zoonosis prevention and control: a scoping review[J]. Infect Dis Poverty, 2022, 11: 48. |
|