[1] | Kim K,, Weiss LM. Toxoplasma gondii: the model apicomplexan[J]. Int J Parasitol, 2004, 34(3): 423-432. | [2] | Zhang Y,, Lai BS,, Juhas M, et al. Toxoplasma gondii secretory proteins and their role in invasion and pathogenesis[J]. Microbiol Res, 2019, 227: 126293. | [3] | Zheng B,, Lu SH. Research progress on immune evasion related molecules of Toxoplasma gondii[J]. Chin J Parasitol Parasit Dis, 2012, 30(5): 396-400. (in Chinese) | [3] | ( 郑斌,, 陆绍红. 刚地弓形虫免疫逃避相关分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(5): 396-400.) | [4] | Lima TS,, Lodoen MB. Mechanisms of human innate immune evasion by Toxoplasma gondii[J]. Front Cell Infect Microbiol, 2019, 9: 103. | [5] | Liu GZ,, Wang B,, Wang HF. Advances in research of Toxoplasma gondii rhoptry protein ROP16[J]. Chin J Schisto Control, 2015, 27(2): 217-220. (in Chinese) | [5] | ( 刘功振,, 王彬,, 王洪法. 弓形虫棒状体蛋白ROP16的研究进展[J]. 中国血吸虫病防治杂志, 2015, 27(2): 217-220.) | [6] | Jensen KDC,, Wang Y,, Wojno EDT, et al. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation[J]. Cell Host Microbe, 2011, 9(6): 472-483. | [7] | Xu YW,, Xing RX,, Zhang WH, et al. Toxoplasma ROP16 Ⅰ/Ⅲ ameliorated inflammatory bowel diseases via inducing M2 phenotype of macrophages[J]. World J Gastroenterol, 2019, 25(45): 6634-6652. | [8] | Chtanova T,, Schaeffer M,, Han SJ, et al. Dynamics of neutrophil migration in lymph nodes during infection[J]. Immunity, 2008, 29(3): 487-496. | [9] | Boothroyd JC. Have it your way: how polymorphic, injected kinases and pseudokinases enable Toxoplasma to subvert host defenses[J]. PLoS Pathog, 2013, 9(4): e1003296. | [10] | Su YJ,, Dong H,, Qiao X, et al. Difference of expression profiling of A549 cells induced by Toxoplasma effector ROP16Ⅱ[J]. Chin J Zoonoses, 2018, 34(4): 323-329. (in Chinese) | [10] | ( 苏雅静,, 董辉,, 乔霞, 等. 弓形虫ROP16 Ⅱ效应分子对宿主A549细胞基因表达谱的影响[J]. 中国人兽共患病学报, 2018, 34(4): 323-329.) | [11] | Ong YC,, Reese ML,, Boothroyd JC. Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6[J]. J Biol Chem, 2010, 285(37): 28731-28740. | [12] | Butcher BA,, Fox BA,, Rommereim LM, et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control[J]. PLoS Pathog, 2011, 7(9): e1002236. | [13] | Saeij JPJ,, Coller S,, Boyle JP, et al. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue[J]. Nature, 2007, 445(7125): 324-327. | [14] | Yamamoto M,, Standley DM,, Takashima S, et al. A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3[J]. J Exp Med, 2009, 206(12): 2747-2760. | [15] | Rosowski EE,, Lu D,, Julien L, et al. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein[J]. J Exp Med, 2011, 208(1): 195-212. | [16] | Martinez FO,, Gordon S,, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression[J]. J Immunol, 2006, 177(10): 7303-7311. | [17] | Rutschman R,, Lang R,, Hesse M, et al. Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production[J]. J Immuno, 2001, 166(4): 2173-2177. | [18] | Kochanowsky JA,, Thomas KK,, Koshy AA. ROP16-mediated activation of STAT6 suppresses host cell reactive oxygen species production, facilitating type Ⅲ Toxoplasma gondii growth and survival[J]. mBio, 2021, 12(2): e03305-e03320. | [19] | Rutschman R,, Lang R,, Hesse M, et al. Cutting edge: STAT6-dependent substrate depletion regulates nitric oxide production[J]. J Immunol, 2001, 166(4): 2173-2177. | [20] | Robben P M,, Mordue D G,, Truscott S M, et al. Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype[J]. J Immunol, 2004, 172(6): 3686-3694. | [21] | Modolell M,, Corraliza IM,, Link F, et al. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by Th1 and Th2 cytokines[J]. Eur J Immunol, 1995, 25(4): 1101-1104. | [22] | Alvarez C,, De-La-Torre A,, Vargas M, et al. Striking divergence in Toxoplasma ROP16 nucleotide sequences from human and meat samples[J]. J Infect Dis, 2014, 211(12): 2006-2013. | [23] | Han M,, Wu H. Research progress of toxoplasmosis in China[J]. Med Inf, 2018, 31(2): 33-36. (in Chinese) | [23] | ( 韩梅,, 吴寒. 我国弓形虫病研究进展[J]. 医学信息, 2018, 31(2): 33-36.) | [24] | Zhu Y,, Yang QL. Interaction between Toxoplasma gondii and host cell[J]. Prog Microbiol Immunol, 2014, 42(5): 77-80. (in Chinese) | [24] | ( 朱勇,, 杨秋林. 弓形虫与宿主细胞相互作用研究进展[J]. 微生物学免疫学进展, 2014, 42(5): 77-80.) | [25] | Carmen JC,, Hardi L,, Sinai AP. Toxoplasma gondii inhibits ultraviolet light-induced apoptosis through multiple interactions with the mitochondrion-dependent programmed cell death pathway[J]. Cell Microbiol, 2006, 8(2): 301-315. | [26] | Jia ZH,, Jia Y,, Guo FJ, et al. Phosphorylation of STAT3 at Tyr705 regulates MMP-9 production in epithelial ovarian cancer[J]. PLoS One, 2017, 12(8): e0183622. | [27] | Hirano T,, Ishihara K,, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors[J]. Oncogene, 2000, 19(21): 2548-2556. | [28] | Nash PB,, Purner MB,, Leon RP, et al. Toxoplasma gondii-infected cells are resistant to multiple inducers of apoptosis[J]. J Immunol, 1998, 160(4): 1824-1830. | [29] | Earnshaw WC,, Martins LM,, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis[J]. Annu Rev Biochem, 1999, 68(1): 383-424. |
|