[1] | Smith NC, Goulart C, Hayward JA, et al. Control of human toxoplasmosis[J]. Int J Parasitol, 2021, 51(2/3): 95-121. | [2] | Montoya JG, Liesenfeld O. Toxoplasmosis[J]. Lancet, 2004, 363(9425): 1965-1976. | [3] | 王杰, 温红阳, 陈滢, 等. 刚地弓形虫巨噬细胞迁移抑制因子基因敲除虫株的构建与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 349-354. | | Wang J, Wen HY, Chen Y, et al. Construction and identification of macrophage migration inhibitory factor gene knockout strain of Toxoplasma gondii[J]. Chin J Parasitol Parasit Dis, 2022, 40(3): 349-354. (in Chinese) | [4] | Saadatnia G, Golkar M. A review on human toxoplasmosis[J]. Scand J Infect Dis, 2012, 44(11): 805-814. | [5] | Buxton D, Innes EA. A commercial vaccine for ovine toxoplasmosis[J]. Parasitology, 1995, 110 Suppl: S11-S16. | [6] | 李仕毓, 李静, 陆绍红, 等. 宿主细胞自主免疫抗弓形虫的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42 (5): 653-658, 663. | | LI SY, Li J, Lu SH, et al. Research advances on host cell autonomous immunity against Toxoplasma gondii[J]. Chin J Parasitol Parasit Dis, 2024, 42(5): 653-658, 663. (in Chinese) | [7] | Luo C, Wang QQ, Guo RH, et al. A novel pseudorabies virus vaccine developed using HDR-CRISPR/Cas9 induces strong humoral and cellular immune response in mice[J]. Virus Res, 2022, 322: 198937. | [8] | Apinda N, Yao YX, Zhang YY, et al. CRISPR/Cas9 editing of duck enteritis virus genome for the construction of a recombinant vaccine vector expressing ompH gene of Pasteurella multocida in two novel insertion sites[J]. Vaccines (Basel), 2022, 10(5): 686. | [9] | 吴燕, 张欣, 李瑾, 等. 基于CRISPR/Cas9技术的弓形虫病疫苗研究进展[J]. 中国血吸虫病防治杂志, 2024, 36(5): 542-547. | | Wu Y, Zhang X, Li J, et al. Progress of researches on toxoplasmosis vaccines based on the CRISPR/Cas9 technology[J]. Chin J Schisto Control, 2024, 36(5): 542-547. (in Chinese) | [10] | Nyonda MA, Hammoudi PM, Ye S, et al. Toxoplasma gondii GRA60 is an effector protein that modulates host cell autonomous immunity and contributes to virulence[J]. Cell Microbiol, 2021, 23(2): e13278. | [11] | Mamaghani AJ, Fathollahi A, Arab-Mazar Z, et al. Toxoplasma gondii vaccine candidates: A concise review[J]. Ir J Med Sci, 2023, 192(1): 231-261. | [12] | 牛美容, 李法财, 谢世臣, 等. 弓形虫Tgcsp2基因敲除株的表型和毒力[J]. 中国兽医学报, 2020, 40(1): 140-146. | | Niu MY, Li FC, Xie SC, et al. Phenotypes and virulence of Tgcsp2 gene knockout Toxoplasma gondii[J]. Chin J Vet Sci, 2020, 40(1): 140-146. (in Chinese) | [13] | Zhang ZW, Li TT, Wang JL, et al. Functional characterization of two thioredoxin proteins of Toxoplasma gondii using the CRISPR-Cas9 system[J]. Front Vet Sci, 2021, 7: 614759. | [14] | Dubey JP. History of the discovery of the life cycle of Toxoplasma gondii[J]. Int J Parasitol, 2009, 39(8): 877-882. | [15] | Kim K. Role of proteases in host cell invasion by Toxoplasma gondii and other Apicomplexa[J]. Acta Trop, 2004, 91(1): 69-81. | [16] | Withers-Martinez C, Suarez C, Fulle S, et al. Plasmodium subtilisin-like protease 1(SUB1): insights into the active-site structure, specificity and function of a pan-malaria drug target[J]. Int J Parasitol, 2012, 42(6): 597-612. | [17] | Lagal V, Binder EM, Huynh MH, et al. Toxoplasma gondii protease TgSUB1 is required for cell surface processing of micronemal adhesive complexes and efficient adhesion of tachyzoites[J]. Cell Microbiol, 2010, 12(12): 1792-1808. | [18] | Binder EM, Lagal V, Kim K. The prodomain of Toxoplasma gondii GPI-anchored subtilase TgSUB1 mediates its targeting to micronemes[J]. Traffic, 2008, 9(9): 1485-1496. | [19] | Miller SA, Thathy V, Ajioka JW, et al. TgSUB2 is a Toxoplasma gondii rhoptry organelle processing proteinase[J]. Mol Microbiol, 2003, 49(4): 883-894. | [20] | 邓敏儿, 李娜, 郭亚琼, 等. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79. | | Deng ME, Li N, Guo YQ, et al. Application of CRISPR/Cas9 system on gene editing of parasitic protozoa[J]. 2023, 54(1): 69-79. | [21] | 闫书宁, 杨硕, 杨汉银, 等. CRISPR/Cas系统在寄生虫基因编辑与核酸检测中的应用进展[J]. 中国血吸虫病防治杂志, 2024, 36(3): 314-332. | | Yan SN, Yang S, Yang HY, et al. Application of the CRISPR/Cas system in gene editing and nucleic acid detection of parasitic diseases: A review[J]. Chin J Schisto Control, 2024, 36(3): 314-332. | [22] | You H, Gordon CA, MacGregor SR, et al. Potential of the CRISPR-Cas system for improved parasite diagnosis: CRISPR-Cas mediated diagnosis in parasitic infections[J]. Bioessays, 2022, 44(4): 2100286. | [23] | Gallagher DN, Haber JE. Repair of a site-specific DNA cleavage: Old-school lessons for Cas9-mediated gene editing[J]. ACS Chem Biol, 2018, 13(2): 397-405. | [24] | Shen B, Brown KM, Lee TD, et al. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9[J]. mBio, 2014, 5(3): e01114-14. |
|