中国寄生虫学与寄生虫病杂志 ›› 2022, Vol. 40 ›› Issue (1): 114-120.doi: 10.12140/j.issn.1000-7423.2022.01.018
刘闯1(), 司雯雯2, 张尹2, 刘蓉2, 刘毅2, 欧阳瑞镯1, 孙军2,*()
收稿日期:
2021-07-24
修回日期:
2021-09-07
出版日期:
2022-02-28
发布日期:
2022-01-14
通讯作者:
孙军
作者简介:
刘闯(1994-),女,硕士研究生,从事青蒿素抗疟机制研究。E-mail: chuang194@126.com
基金资助:
LIU Chuang1(), SI Wen-wen2, ZHANG Yin2, LIU Rong2, LIU Yi2, OUYANG Rui-zhuo1, SUN Jun2,*()
Received:
2021-07-24
Revised:
2021-09-07
Online:
2022-02-28
Published:
2022-01-14
Contact:
SUN Jun
Supported by:
摘要:
青蒿素类药物不仅在治疗疟疾和血吸虫病方面具有独特的疗效,而且在其他疾病的治疗和防治中也具有潜力。越来越多的研究表明,青蒿素及其衍生物具有广泛的功能,这种广谱性正越来越引起人们的重视。本文综述了青蒿素类药物在寄生原虫、寄生蠕虫、病毒、细菌、真菌、昆虫、植物以及癌症疾病中应用的研究成果,并基于其作用的广谱性特征,结合青蒿素通过铁或血红素实现抗疟原虫、抗血吸虫、抗肿瘤效果的作用方式,探讨青蒿素广泛功能背后的潜在作用机制。
中图分类号:
刘闯, 司雯雯, 张尹, 刘蓉, 刘毅, 欧阳瑞镯, 孙军. 青蒿素类药物的广谱性及其潜在作用机制的探讨[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 114-120.
LIU Chuang, SI Wen-wen, ZHANG Yin, LIU Rong, LIU Yi, OUYANG Rui-zhuo, SUN Jun. A discussion on the broad-spectrum and potential mechanism of artemisinin and its derivatives[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(1): 114-120.
[1] | Wang JG, Zhu YP, Xu CC, et al. Research course and value of artemisinin[J]. Elect J Emerg Infect Dis, 2019, 4(4): 193-195. (in Chinese) |
(王继刚, 朱永平, 徐承超, 等. 青蒿素的研究历程与价值[J]. 新发传染病电子杂志, 2019, 4(4): 193-195.) | |
[2] | Sun C, Li J, Zhou B. Mechanism of action of artemisinins: a long unsettled challenge[J]. Sci China Life Sci, 2012, 42(5): 345-354. (in Chinese) |
(孙辰, 李坚, 周兵. 青蒿素类药物的作用机制:一个长久未决的基础研究挑战[J]. 中国科学: 生命科学, 2012, 42(5): 345-354.) | |
[3] |
Xiao SH. Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins[J]. Acta Trop, 2005, 96(2-3): 153-167.
doi: 10.1016/j.actatropica.2005.07.010 |
[4] |
Loo CS, Lam NS, Yu D, et al. Artemisinin and its derivatives in treating protozoan infections beyond malaria[J]. Pharmacol Res, 2017, 117: 192-217.
doi: 10.1016/j.phrs.2016.11.012 |
[5] |
Lam NS, Long X, Su XZ, et al. Artemisinin and its derivatives in treating helminthic infections beyond schistosomiasis[J]. Pharmacol Res, 2018, 133: 77-100.
doi: 10.1016/j.phrs.2018.04.025 |
[6] |
Efferth T, Romero MR, Wolf DG, et al. The antiviral activities of artemisinin and artesunate[J]. Clin Infect Dis, 2008, 47(6): 804-811.
doi: 10.1086/591195 pmid: 18699744 |
[7] | Huang M, Shen JY, Du CC, et al. Preliminary study on antibacterial activity of artemisinin and its derivatives[J]. Chin J Chin Mater Med, 2019, 44(9): 1946-1952. (in Chinese) |
(黄梅, 沈建英, 杜成成, 等. 青蒿素及其衍生物的抗菌活性初步研究[J]. 中国中药杂志, 2019, 44(9): 1946-1952.) | |
[8] |
Knudsmark JK, Duke SO, Cedergreeen N. Potential ecological roles of artemisinin produced by Artemisia annua L[J]. J Chem Ecol, 2014, 40(2): 100-117.
doi: 10.1007/s10886-014-0384-6 pmid: 24500733 |
[9] |
Kiani BH, Kayani WK, Khayam AU, et al. Artemisinin and its derivatives: a promising cancer therapy[J]. Mol Biol Rep, 2020, 47(8): 6321-6336.
doi: 10.1007/s11033-020-05669-z |
[10] |
Wang Y, Wang Y, You F, et al. Novel use for old drugs: the emerging role of artemisinin and its derivatives in fibrosis[J]. Pharmacol Res, 2020, 157: 104829.
doi: 10.1016/j.phrs.2020.104829 |
[11] |
Jiang Y, Du H, Liu X, et al. Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NF-κB/NLRP3 inflammasomes pathway[J]. J Drug Target, 2020, 28(1): 70-79.
doi: 10.1080/1061186X.2019.1616296 pmid: 31094238 |
[12] |
Jiang YY, Shui JC, Zhang BX, et al. The potential roles of artemisinin and its derivatives in the treatment of type 2 diabetes mellitus[J]. Front Pharmacol, 2020, 11: 585487.
doi: 10.3389/fphar.2020.585487 |
[13] | Wang P, Liu T, Wang J, et al. Immunomodulative effects of artemisinin and its derivatives in the relative diseases[J]. Chin Trop Med, 2020, 20(2): 174-178. (in Chinese) |
(王盼, 刘婷, 王静, 等. 青蒿素及其衍生物在相关疾病中的免疫调节作用[J]. 中国热带医学, 2020, 20(2): 174-178.) | |
[14] | Xie Y, Ni YW, Zhu ZY, et al. Research progress of effect of artemisinin family drugs on alleviating autoimmune diseases and their mechanisms[J]. Med Innov Chin, 2020, 17(7): 163-167. (in Chinese) |
(谢宜, 倪宇雯, 朱泽宇, 等. 青蒿素类药物缓解自身免疫病及其机制的研究现状[J]. 中国医学创新, 2020, 17(7): 163-167.) | |
[15] | Li HJ, Wang W, Liang YS. Advances in research of dihydroartemisinin against parasitic diseases[J]. Chin J Schisto Control, 2011, 23(4): 460-464. (in Chinese) |
(李洪军, 汪伟, 梁幼生. 双氢青蒿素抗寄生虫作用研究进展[J]. 中国血吸虫病防治杂志, 2011, 23(4): 460-464.) | |
[16] | Lu DM, Hu XS, Ma Y, et al. Studies on the effect of dihydroartemisinin on Leishmania donovani promastigotes in vitro[J]. J Pathog Biol, 1999, 12(1): 28-31. (in Chinese) |
(芦殿梅, 胡孝素, 马莹, 等. 双氢青蒿素对杜氏利什曼原虫前鞭毛体作用体外实验研究[J]. 中国病原生物学杂志, 1999, 12(1): 28-31.) | |
[17] | Lu DM, Hu XS, Qiao ZD. Effect of dihydroartemisinin on Leishmania donovani promastigotes DNA analysed by flow cytometry[J]. Parasit Infect Dis, 1999, 7(3): 97-99. (in Chinese) |
(芦殿梅, 胡孝素, 乔中东. 用流式细胞术分析双氢青蒿素对杜氏利什曼原虫DNA的作用[J]. 寄生虫病与感染性疾病, 1999, 7(3): 97-99.) | |
[18] |
Cortes S, Albuquerque A, Cabral LI, et al. In vitro susceptibility of Leishmania infantum to artemisinin derivatives and selected trioxolanes[J]. Antimicrob Agents Chemother, 2015, 59(8): 5032-5035.
doi: 10.1128/AAC.00298-15 pmid: 26014947 |
[19] |
Esavand Heydari F, Ghaffarifar F, Soflaei S, et al. Comparison between in vitro effects of aqueous extract of artemisia seiberi and artemisinin on Leishmania major[J]. Jundishapur J Nat Pharm Prod, 2013, 8(2): 70-75.
doi: 10.5812/jjnpp |
[20] |
Tian XF, Shen HE, Li J, et al. The effects of dihydroartemisinin on Giardia lamblia morphology and cell cycle in vitro[J]. Parasitol Res, 2010, 107(2): 369-375.
doi: 10.1007/s00436-010-1872-4 |
[21] |
Dunay IR, Chan WC, Haynes RK, et al. Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model[J]. Antimicrob Agents Chemother, 2009, 53(10): 4450-4456.
doi: 10.1128/AAC.00502-09 |
[22] | Yin WD, Gao QC, Liu XD, et al. In vivo effect of dihydroartemisinin and azithromycin on the ultrastructure of Toxoplasma gondii tachyzoites[J]. Chin J Parasitol Parasit Dis, 2009, 27(4): 325-327. (in Chinese) |
(尹卫东, 高全成, 刘向东, 等. 双氢青蒿素和阿奇霉素对小鼠体内弓形虫速殖子超微结构的影响[J]. 中国寄生虫学与寄生虫病杂志, 2009, 27(4): 325-327.) | |
[23] |
Mazuz ML, Golenser J, Fish L, et al. Artemisone inhibits in vitro and in vivo propagation of Babesia bovis and B. bigemina parasites[J]. Exp Parasitol, 2013, 135(4): 690-694.
doi: 10.1016/j.exppara.2013.10.006 |
[24] |
Xiao SH, Jian X, Tanner M, et al. Artemether, artesunate, praziquantel and tribendimidine administered singly at different dosages against Clonorchis sinensis: a comparative in vivo study[J]. Acta Trop, 2008, 106(1): 54-59.
doi: 10.1016/j.actatropica.2008.01.003 |
[25] |
Spicher M, Roethlisberger C, Lany C, et al. In vitro and in vivo treatments of Echinococcus protoscoleces and metacestodes with artemisinin and artemisinin derivatives[J]. Antimicrob Agents Chemother, 2008, 52(9): 3447-3450.
doi: 10.1128/AAC.00553-08 pmid: 18625777 |
[26] |
Keiser J, Shu-Hua X, Tanner M, et al. Artesunate and artemether are effective fasciolicides in the rat model and in vitro[J]. J Antimicrob Chemother, 2006, 57(6): 1139-1145.
doi: 10.1093/jac/dkl125 |
[27] | Xiang F, Shi JQ, Yao KJ, et al. Research progress on anti-tumor effect of artemisinin[J]. Chin Clin Oncol, 2021, 26(5): 465-469. (in Chinese) |
(相芳, 史坚强, 姚可娟, 等. 青蒿素类药物抗肿瘤作用的研究进展[J]. 临床肿瘤学杂志, 2021, 26(05): 465-469.) | |
[28] |
Abd El-Kaream SA. Biochemical and biophysical study of chemopreventive and chemotherapeutic anti-tumor potential of some Egyptian plant extracts[J]. Biochem Biophys Rep, 2019, 18: 100637.
doi: 10.1016/j.bbrep.2019.100637 pmid: 31016248 |
[29] |
Verma S, Das P, Kumar VL. Chemoprevention by artesunate in a preclinical model of colorectal cancer involves down regulation of β-catenin, suppression of angiogenesis, cellular proliferation and induction of apoptosis[J]. Chem Biol Interact, 2017, 278: 84-91.
doi: 10.1016/j.cbi.2017.10.011 |
[30] |
Greenshields AL, Shepherd TG, Hoskin DW. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate[J]. Mol Carcinog, 2017, 56(1): 75-93.
doi: 10.1002/mc.v56.1 |
[31] |
Yao Y, Guo Q, Cao Y, et al. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 282.
doi: 10.1186/s13046-018-0960-7 |
[32] | Guo B, Liu DX, Li LL, et al. Mechanism of artemisinin on p53 induced apoptosis of hepatocellular carcinoma cells[J]. Labeled Immunoassays Clin Med, 2017, 24(3): 314-316, 325. (in Chinese) |
(郭彬, 刘殿星, 李雷雷, 等. 青蒿素调控p53蛋白诱导肝癌细胞凋亡的机制研究[J]. 标记免疫分析与临床, 2017, 24(3): 314-316, 325.) | |
[33] | Di TN, Cao HJ, Ge CL. Research status of artemisinin and its derivatives in reversing anti-tumor drug resistance[J]. Anti-Tumor Pharm, 2020, 10(6): 649-653, 663. (in Chinese) |
(邸天男, 曹慧君, 葛春蕾. 青蒿素及其衍生物逆转抗肿瘤药物耐药性的研究现状[J]. 肿瘤药学, 2020, 10(6): 649-653, 663.) | |
[34] |
D’Alessandro S, Scaccabarozzi D, Signorini L, et al. The use of antimalarial drugs against viral infection[J]. Microorganisms, 2020, 8(1): 85.
doi: 10.3390/microorganisms8010085 |
[35] | Yi XR, Yuan YC, Zhang XR, et al. The pilot study of anti-HBV effect of artesunate and its combination with bortezomib in HBV transgenic mice[J]. Pharmacol Clin Chin Mater Med, 2016, 32(2): 53-57. (in Chinese) |
(易学瑞, 袁有成, 张欣蕊, 等. 青蒿琥酯及其与硼替佐米在HBV-Tg小鼠中抗病毒作用研究[J]. 中药药理与临床, 2016, 32(2): 53-57.) | |
[36] |
Hutterer C, Niemann I, Milbradt J, et al. The broad-spectrum antiinfective drug artesunate interferes with the canonical nuclear factor kappa B (NF-κB) pathway by targeting RelA/p65[J]. Antivir Res, 2015, 124: 101-109.
doi: 10.1016/j.antiviral.2015.10.003 pmid: 26546752 |
[37] | Li M, Liu HJ, Cui XJ. Research progress in the use of artemisinin in the treatment of non-malarial diseases[J]. Chin Gen Pract, 2018, 21(12): 1508-1512. (in Chinese) |
(李明, 刘洪江, 崔向军. 青蒿素类药物在非疟疾疾病中的研究进展[J]. 中国全科医学, 2018, 21(12): 1508-1512.)
doi: 10.3969/j.issn.1007-9572.2018.00.103 |
|
[38] | Ni XY, Chen YT. In vitro study of the anti-Pneumocystis carinii effect of arteminsin derivatives[J]. Chin J Tuberc Respir Dis, 2001, 24(3): 164-167. (in Chinese) |
(倪小毅, 陈雅棠. 青蒿素衍生物抗卡氏肺孢子虫体外作用的研究[J]. 中华结核和呼吸杂志, 2001, 24(3): 164-167.) | |
[39] | Ni XY, Chen YT, Wang J, et al. Sem observation of the anti-Pneumocystis carinii effect of arteminsin derivatives in vitro[J]. Chin J Parasit Dis Control, 2003, 16(4): 193-195. (in Chinese) |
(倪小毅, 陈雅棠, 王健, 等. 青蒿素衍生物体外抗卡氏肺孢子虫作用的扫描电镜观察[J]. 中国寄生虫病防治杂志, 2003, 16(4): 193-195.) | |
[40] |
Shapira MY, Resnick IB, Chou S, et al. Artesunate as a potent antiviral agent in a patient with late drug-resistant Cytomegalovirus infection after hematopoietic stem cell transplantation[J]. Clin Infect Dis, 2008, 46(9): 1455-1457.
doi: 10.1086/588716 |
[41] | Emadi F, Yassa N. Chemical composition of Iranian Artemisia annua L. essential oil and its antibacterial, antifungal and antioxidant effects[J]. Planta Med, 2009, 75. |
[42] |
Galal AM, Ross SA, Jacob M, et al. Antifungal activity of artemisinin derivatives[J]. J Nat Prod, 2005, 68(8): 1274-1276.
doi: 10.1021/np050074u |
[43] |
Gautam P, Upadhyay SK, Hassan W, et al. Transcriptomic and proteomic profile of Aspergillus fumigatus on exposure to artemisinin[J]. Mycopathologia, 2011, 172(5): 331-346.
doi: 10.1007/s11046-011-9445-3 |
[44] |
Ebiamadon, Brisibe I, Sophia EA, et al. Controlling bruchid pests of stored cowpea seeds with dried leaves of Artemisia annua and two other common botanicals[J]. Afr J Biotechnol, 2011, 10(47): 9586-9592.
doi: 10.5897/AJB |
[45] |
Duke SO, Vaughn KC, Croom EM Jr, et al. Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin[J]. Weed Sci, 1987, 35(4): 499-505.
doi: 10.1017/S0043174500060458 |
[46] |
Dayan FE, Hernández A, Allen SN, et al. Comparative phytotoxicity of artemisinin and several sesquiterpene analogues[J]. Phytochemistry, 1999, 50(4): 607-614.
doi: 10.1016/S0031-9422(98)00568-8 |
[47] | Xiao SH, Guo J, Chollet J, et al. Effect of artemether on Schistosoma mansoni: dose-efficacy relationship, and changes in worm morphology and histopathology[J]. Chin J Parasitol Parasit Dis, 2004, 22(3): 148-153. |
[48] | Xiao SH, Tanner M, Shen BG, et al. Effect of artemether on the tegument of adult Schistosoma haematobium recovered from mice[J]. Chin J Parasitol Parasit Dis, 2006, 24(6): 425-432. |
[49] |
Xiao SH, Sun J. Schistosoma hemozoin and its possible roles[J]. Int J Parasitol, 2017, 47(4): 171-183.
doi: 10.1016/j.ijpara.2016.10.005 |
[50] |
Sun J, Li C, Wang S. Organism-like formation of Schistosoma hemozoin and its function suggest a mechanism for anti-malarial action of artemisinin[J]. Sci Rep, 2016, 6: 34463.
doi: 10.1038/srep34463 |
[51] |
Sun J, Hu W, Li C. Beyond heme detoxification: a role for hemozoin in iron transport in S. japonicum[J]. Parasitol Res, 2013, 112(8): 2983-2990.
doi: 10.1007/s00436-013-3470-8 |
[52] |
Wang JG, Zhang CJ, Chia WN, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum[J]. Nat Commun, 2015, 6: 10111.
doi: 10.1038/ncomms10111 |
[53] | Wang JY, Wei W, Wang MD. Vitamin E and the antimalarial mechanism of artesunate[J]. Bull Acad Mil Med Sci, 1995, 19(4): 278-282. (in Chinese) |
(王京燕, 魏文, 王明道. 维生素E与青蒿琥酯的抗疟机制[J]. 军事医学科学院院刊, 1995, 19(4): 278-282.) | |
[54] | Huang F, Tang LH. Advances in the study of iron chelating agents and antimalarial drugs[J]. Chin J Parasitol Parasit Dis, 2005, 23(4): 250-253. (in Chinese) |
(黄芳, 汤林华. 铁螯合剂类抗疟药的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2005, 23(4): 250-253.) | |
[55] |
Slezakova S, Ruda-Kucerova J. Anticancer activity of artemisinin and its derivatives[J]. Anticancer Res, 2017, 37(11): 5995-6003.
pmid: 29061778 |
[56] | Han DM, Zhao YF, Li JL, et al. Progress of transferrin receptor in tumor research[J]. J Fujian Norm Univ Nat Sci Ed, 2018, 34(3): 110-106. (in Chinese) |
(韩冬梅, 赵一帆, 李江林, 等. 转铁蛋白受体在肿瘤研究中的进展[J]. 福建师范大学学报(自然科学版), 2018, 34(3): 110-106.) | |
[57] | Shen Y, Li X, Dong D, et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy[J]. Am J Cancer Res, 2018, 8(6): 916-931. |
[58] |
Torti SV, Manz DH, Paul BT, et al. Iron and cancer[J]. Annu Rev Nutr, 2018, 38(1): 97-125.
doi: 10.1146/nutr.2018.38.issue-1 |
[1] | 马悦, 赵保才, 周佳丽, 胡峻豪, 赵洪喜. miRNA在顶复门寄生虫感染中调控作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 749-755. |
[2] | 蒋天哥, 曾文博, 李中秋, 张仪. 非编码RNA在利什曼病中的调控作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 92-97. |
[3] | 杨博, 孙毅凡, 雷瑶, 程洋. 青蒿素及其衍生物治疗疟疾的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 393-402. |
[4] | 叶升玉, 成依依, 李曼, 周红宁. 我国恶性疟原虫主要药物抗性研究[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5): 631-636. |
[5] | 孙成松, 胡薇, 汪天平. 胞外囊泡介导血吸虫与宿主相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(3): 378-382. |
[6] | 陈静, 刘耀宝, 唐凤, 陆凤, 唐建霞, 曹俊. 卵形疟原虫非洲分离株K13基因的多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(2): 167-172. |
[7] | 牟畇珊, 李璐杰, 吴银娟, 李学荣. 疟原虫青蒿素耐药分子机制探索[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 636-642. |
[8] | 郑文琪, 苏秀兰. 抗菌肽的抗疟原虫活性及作用机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 643-647. |
[9] | 董莹, 孙艾明, 邓艳, 陈梦妮, 徐艳春, 毛祥华. 云南省恶性疟原虫氯喹及青蒿素抗性相关基因的联合突变分析[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(3): 202-208. |
[10] | 姚嘉青, 刘丛珊, 张皓冰. 寄生虫微管蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(2): 180-184. |
[11] | 孙艾明1,2,董莹2*,陈梦妮2,徐艳春2,邓艳2,毛祥华2,王剑2. 云南省恶性疟原虫青蒿素耐药性相关基因 K13 kelch结构域序列多态性的分析[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(4): 8-339-345. |
[12] | 张逸龙,潘卫庆*. 恶性疟原虫对青蒿素产生抗性的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(6): 5-418-424. |
[13] | 程慧芳,赵青,高娟,王锐利,张淑秋*. SYBR GreenⅠ法体外评价胆碱衍生物的抗恶性疟原虫活性[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(3): 8-196-199. |
[14] | 刘泽华,赵俊龙*. 抗菌肽抗寄生虫作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(5): 11-377-379,384. |
[15] | 赵绍敏,王满元*. 恶性疟原虫对青蒿素类药物产生耐药性的全球现状和基础研究[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(5): 12-380-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||