[1] | World Health Organization.World malaria report 2017[R]. Geneva: World Health Organization, 2017. | [2] | Guerra CA, Howes RE, Patil AP, et al. The international limits and population at risk of Plasmodium vivax transmission in 2009[J]. PLoS Negl Trop Dis, 2010, 4(8): e774. | [3] | 张丽, 丰俊, 张少森, 等. 2016年全国疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(6): 515-519. | [4] | 李奔福, 蔺应学, 郭祥瑞, 等. 中缅边境疟疾流行情况调查[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(4): 261-263. | [5] | 张冬梅, 潘卫庆. 我国疟疾疫苗研究进展及前景[J]. 中国寄生虫学与寄生虫病杂志, 2009, 27(5): 390-393. | [6] | 徐超, 魏庆宽, 李瑾, 等. 境外输入性恶性疟原虫抗药性相关基因突变的检测[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(6): 482-488. | [7] | Michon P, Fraser T, Adams JH.Naturally acquired and vaccine-elicited antibodies block erythrocyte cytoadherence of the Plasmodium vivax Duffy binding protein[J]. Infect Immun, 2000, 68(6): 3164-3171. | [8] | Ceravolo IP, Souza-Silva FA, Fontes CJ, et al. Inhibitory properties of the antibody response to Plasmodium vivax Duffy binding protein in an area with unstable malaria transmission[J]. Scand J Immunol, 2008, 67(3): 270-278. | [9] | King CL, Michon P, Shakri AR, et al. Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection[J]. Proc Natl Acad Sci USA, 2008, 105(24): 8363-8368. | [10] | Ntumngia FB, Richard TL, Menezes TLD, et al. A novel erythrocyte binding protein of Plasmodium vivax suggests an alternate invasion pathway into Duffy-positive reticulocytes[J]. MBio, 2016, 7(4). | [11] | Gupta ED, Anand G, Singh H, et al. Naturally acquired human antibodies against reticulocyte-binding domains of Plasmodium vivax proteins, PvRBP2c and PvRBP1a, exhibit binding-inhibitory activity[J]. J Infect Dis, 2017, 215(10): 1558-1568. | [12] | Zeeshan M, Tyagi RK, Tyagi K, et al. Host-parasite interaction: selective Pv-fam-a family proteins of Plasmodium vivax bind to a restricted number of human erythrocyte receptors[J]. J Infect Dis, 2015, 211(7): 1111-1120. | [13] | Alam MS, Zeeshan M, Mittra P, et al. Receptor specific binding regions of Plasmodium vivax tryptophan rich antigens and parasite growth inhibition activity of PvTRAg35.2[J]. Microbes Infect, 2016, 18(9): 550-558. | [14] | Cheng Y, Lu F, Wang B, et al. Plasmodium vivax GPI-anchored micronemal antigen(PvGAMA) binds human erythrocytes independent of Duffy antigen status[J]. Sci Rep, 2016, 6(6). | [15] | Baquero LA, Moreno-Pérez DA, Garzón-Ospina D, et al. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis[J]. Parasit Vectors, 2017, 10(1): 251. | [16] | Cutbush M, Mollison PL.The Duffy blood group system[J]. Heredity (Edinb), 1950, 4(3): 383-389. | [17] | Miller LH, Mason SJ, Dvorak JA, et al. Erythrocyte receptors for(Plasmodium knowlesi) malaria: Duffy blood group determinants[J]. Science, 1975, 189(4202): 561-563. | [18] | Chitnis CE, Chaudhuri A, Horuk R, et al. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes[J]. J Exp Med, 1996, 184(4): 1531-1536. | [19] | Chitnis CE, Sharma A.Targeting the Plasmodium vivax Duffy-binding protein[J]. Trends Parasitol, 2008, 24(1): 29-34. | [20] | Carlton JM, Adams JH, Silva JC, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax[J]. Nature, 2008, 455(7214): 757-763. | [21] | Batchelor JD, Malpede BM, Omattage NS, et al. Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC[J]. PLoS Pathog, 2014, 10(1): e1003869. | [22] | Grimberg BT, Udomsangpetch R, Xainli J, et al. Plasmodium vivax invasion of human erythrocytes inhibited by antibodies directed against the Duffy binding protein[J]. PLoS Med, 2007, 4(12): e337. | [23] | Woolley IJ, Hotmire KA, Sramkoski RM, et al. Differential expression of the Duffy antigen receptor for chemokines according to RBC age and FY genotype[J]. Transfusion, 2000, 40(8): 949-953. | [24] | Gunalan K, Lo E, Hostetler JB, et al. Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans[J]. Proc Natl Acad Sci USA, 2016, 113(22): 6271-6276. | [25] | Hester J, Chan ER, Menard D, et al. De novo assembly of a field isolate genome reveals novel Plasmodium vivax erythrocyte invasion genes[J]. PLoS Negl Trop Dis, 2013, 7(12): e2569. | [26] | Neafsey DE, Galinsky K, Jiang RH, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum[J]. Nat Genet, 2012, 44(9): 1046-1050. | [27] | Urquiza M, Patarroyo MA, Marí V, et al. Identification and polymorphism of Plasmodium vivax RBP-1 peptides which bind specifically to reticulocytes[J]. Peptides, 2002, 23(12): 2265-2277. | [28] | Galinski MR, Barnwell JW.Plasmodium vivax: merozoites, invasion of reticulocytes and considerations for malaria vaccine development[J]. Parasitol Today (Regul Ed), 1996, 12(1): 20-29. | [29] | Han JH, Lee SK, Wang B, et al. Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain[J]. Sci Rep, 2016, 6: 26993. | [30] | Cantor EM, Lombo TB, Cepeda A, et al. Plasmodium vivax: functional analysis of a highly conserved PvRBP-1 protein region[J]. Mol Biochem Parasitol, 2001, 117(2): 229-234. | [31] | Burns JM Jr, Adeeku EK, Dunn PD.Protective immunization with a novel membrane protein of Plasmodium yoelii-infected erythrocytes[J]. Infect Immun, 1999, 67(2): 675-680. | [32] | Burns JM, Adeeku EK, Belk CC, et al. An unusual tryptophan-rich domain characterizes two secreted antigens of Plasmodium yoelii-infected erythrocytes[J]. Mol Biochem Parasitol, 2000, 110(1): 11-21. | [33] | Curtidor H, Ocampo M, Rodríguez LE, et al. Plasmodium falciparum TryThrA antigen synthetic peptides block in vitro merozoite invasion to erythrocytes[J]. Biochem Biophys Res Commun, 2006, 339(3): 888-896. | [34] | Wang B, Lu F, Cheng Y, et al. Immunoprofiling of the tryptophan-rich antigen family in Plasmodium vivax[J]. Infect Immun, 2015, 83(8): 3083-3095. | [35] | Tyagi RK, Sharma YD.Erythrocyte binding activity displayed by a selective group of Plasmodium vivax tryptophan rich antigens is inhibited by patients′ antibodies[J]. PLoS One, 2012, 7(12): e50754. | [36] | Zeeshan M, Tyagi K, Sharma YD.CD4+ T cell response correlates with naturally acquired antibodies against Plasmodium vivax tryptophan-rich antigens[J]. Infect Immun, 2015, 83(5): 2018-2029. | [37] | Rathore S, Dass S, Kandari D, et al. Basigin interacts with Plasmodium vivax tryptophan-rich antigen PvTRAg38 as a second erythrocyte receptor to promote parasite growth[J]. J Biol Chem, 2017, 292(2): 462-476. | [38] | Alam MS, Choudhary V, Zeeshan M, et al. Interaction of Plasmodium vivax tryptophan-rich antigen PvTRAg38 with band 3 on human erythrocyte surface facilitates parasite growth[J]. J Biol Chem, 2015, 290(33): 20257-20272. | [39] | Tyagi K, Hossain ME, Thakur V, et al. Plasmodium vivax tryptophan rich antigen PvTRAg36.6 interacts with PvETRAMP and PvTRAg56.6 interacts with PvMSP7 during erythrocytic stages of the parasite[J]. PLoS One, 2016, 11(3): e0151065. | [40] | Gilson PR, Nebl T, Vukcevic D, et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum[J]. Mol Cell Proteomics, 2006, 5(7): 1286-1299. | [41] | Arumugam TU, Takeo S, Yamasaki T, et al. Discovery of GAMA, a Plasmodium falciparum merozoite micronemal protein, as a novel blood-stage vaccine candidate antigen[J]. Infect Immun, 2011, 79(11): 4523-4532. | [42] | Babon JJ, Morgan WD, Kelly G, et al. Structural studies on Plasmodium vivax merozoite surface protein-1[J]. Mol Biochem Parasitol, 2007, 153(1): 31-40. | [43] | Cowman AF, Tonkin CJ, Tham WH, et al. The molecular basis of erythrocyte invasion by malaria parasites[J]. Cell Host Microbe, 2017, 22(2): 232-245. | [44] | O′Donnell RA, Saul A, Cowman AF, et al. Functional conservation of the malaria vaccine antigen MSP-119 across distantly related Plasmodium species[J]. Nat Med, 2000, 6(1): 91-95. | [45] | Cheng Y, Wang Y, Ito D, et al. The Plasmodium vivax merozoite surface protein 1 paralog is a novel erythrocyte-binding ligand of P. vivax[J]. Infect Immun, 2013, 81(5): 1585-1595. | [46] | Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016, 167(3): 610-624. | [47] | Cheng Y, Shin EH, Lu F, et al. Antigenicity studies in humans and immunogenicity studies in mice: an MSP1P subdomain as a candidate for malaria vaccine development[J]. Microbes Infect, 2014, 16(5): 419-428. | [48] | Healer J, Murphy V, Hodder AN, et al. Allelic polymorphisms in apical membrane antigen-1 are responsible for evasion of antibody-mediated inhibition in Plasmodium falciparum[J]. Mol Microbiol, 2004, 52(1): 159-168. | [49] | Maskus DJ, Królik M, Bethke S, et al. Characterization of a novel inhibitory human monoclonal antibody directed against Plasmodium falciparum apical membrane antigen 1[J]. Sci Rep, 2016, 6: 39462. | [50] | Arévalo-Pinzón G, Bermúdez M, Hernández D, et al. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes[J]. Sci Rep, 2017, 7(1): 9616. |
|