[1] | Alvi MA, Alsayeqh AF. Food-borne zoonotic echinococcosis: A review with special focus on epidemiology[J]. Front Vet Sci, 2022, 9: 1072730. | [2] | Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: Advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32(2): e00075-18. | [3] | Peters L, Jiang WJ, Eberhardt N, et al. 18FDG-PET/CT-scans and biomarker levels predicting clinical outcome in patients with alveolar echinococcosis: A single-center cohort study with 179 patients[J]. Pathogens, 2023, 12(8): 1041. | [4] | Torgerson PR, Schweiger A, Deplazes P, et al. Alveolar echinococcosis: From a deadly disease to a well-controlled infection. Relative survival and economic analysis in Switzerland over the last 35 years[J]. J Hepatol, 2008, 49(1): 72-77. | [5] | Zhang CS, Wang H, Li J, et al. Involvement of TIGIT in natural killer cell exhaustion and immune escape in patients and mouse model with liver Echinococcus multilocularis infection[J]. Hepatology, 2021, 74(6): 3376-3393. | [6] | Gaudino SJ, Kumar P. Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis[J]. Front Immunol, 2019, 10: 360. | [7] | 刘志刚, 张万华, 刘霆. 腹膜腔细胞的免疫特性及功能研究进展[J]. 重庆医学, 2019, 48(14): 2467-2470. | | Liu ZG, Zhang WH, Liu T. Advances in research on immune characteristics and function of peritoneal cells[J]. Chongqing Med, 2019, 48(14): 2467-2470. (in Chinese) | [8] | Huntington ND, Gray DH. Immune homeostasis in health and disease[J]. Immunol Cell Biol, 2018, 96(5): 451-452. | [9] | Wagner PL, Knotts CM, Donneberg VS, et al. Characterizing the immune environment in peritoneal carcinomatosis: Insights for novel immunotherapy strategies[J]. Ann Surg Oncol, 2024, 31(3): 2069-2077. | [10] | 吕群燕, 田志刚, 董尔丹, 等. 组织器官的区域免疫特性与疾病机理研究[J]. 科学通报, 2012, 57(36): 3450-3458. | | Lü QY, Tian ZG, Dong ED, et al. Tissue/organ-specialized immunologic features and disease mechanisms[J]. Chin Sci Bull, 2012, 57(36): 3450-3458. (in Chinese) | [11] | Lodygin D, Flügel A. Intravital real-time analysis of T-cell activation in health and disease[J]. Cell Calcium, 2017, 64: 118-129. | [12] | Mejri N, Gottstein B. Intraperitoneal Echinococcus multilocularis infection in C57BL/6 mice affects CD40 and B7 costimulator expression on peritoneal macrophages and impairs peritoneal T cell activation[J]. Parasite Immunol, 2006, 28(8): 373-385. | [13] | 李建辉, 彭心宇, 周宗瑶, 等. 骨桥蛋白在肝细粒棘球蚴外囊壁中的表达[J]. 中国寄生虫学与寄生虫病杂志, 2006, 24(3): 171-174. | | Li JH, Peng XY, Zhou ZY, et al. Expression of osteopontin in the pericystic layer of hepatic hydatid cyst[J]. Chin J Parasitol Parasit Dis, 2006, 24(3): 171-174. (in Chinese) | [14] | Wu FR, Pan CX, Rong C, et al. Inhibition of acid-sensing ion channel 1a in hepatic stellate cells attenuates PDGF-induced activation of HSCs through MAPK pathway[J]. Mol Cell Biochem, 2014, 395(1/2): 199-209. | [15] | Kilwinski J, Jenne L, Jellen-Ritter A, et al. T lymphocyte cytokine profile at a single cell level in alveolar echinococcosis[J]. Cytokine, 1999, 11(5): 373-381. | [16] | Manfras BJ, Reuter S, Wendland T, et al. Increased activation and oligoclonality of peripheral CD8+ T cells in the chronic human helminth infection alveolar echinococcosis[J]. Infect Immun, 2002, 70(3): 1168-1174. | [17] | Mejri N, Müller N, Hemphill A, et al. Intraperitoneal Echinococcus multilocularis infection in mice modulates peritoneal CD4+ and CD8+ regulatory T cell development[J]. Parasitol Int, 2011, 60(1): 45-53. | [18] | 侯娇, 温浩, 王明坤, 等. 多房棘球蚴感染小鼠脾脏巨噬细胞亚群及其极化表型的变化[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 771-778. | | Hou J, Wen H, Wang MK, et al. Changes of macrophage subsets and polarization in spleen of mice infected with Echinococcus multilocularis[J]. Chin J Parasitol Parasit Dis, 2021, 39(6): 771-778. (in Chinese) | [19] | 侯昕伶, 李亮, 李玲慧, 等. 泡球蚴感染对小鼠脾脏CD8+ T细胞免疫功能耗竭的影响[J]. 中国血吸虫病防治杂志, 2020, 32(6): 591-597, 604. | | Hou XL, Li L, Li LH, et al. Exhaustion of CD8+ T cell immune functions in spleen of mice with different doses of Echinococcus multilocularis infections[J]. Chin J Schisto Control, 2020, 32(6): 591-597, 604. (in Chinese) | [20] | 张伶慧, 陈根, 种世桂, 等. 多房棘球蚴病中免疫细胞调控机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 109-113, 120. | | Zhang LH, Chen G, Chong SG, et al. Research progress on the immune regulation mechanism in alveolar echinococcosis[J]. Chin J Parasitol Parasit Dis, 2022, 40(1): 109-113, 120. (in Chinese) | [21] | 徐凯, 王海久, 张丽, 等. 多房棘球蚴对宿主肝细胞损害机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(2): 256-260. | | Xu K, Wang HJ, Zhang L, et al. Research progress on the mechanisms underlying the impairment of host hepatocytes by Echinococcus multilocularis[J]. Chin J Parasitol Parasit Dis, 2021, 39(2): 256-260. (in Chinese) | [22] | Grubor NM, Jovanova-Nesic KD, Shoenfeld Y. Liver cystic echinococcosis and human host immune and autoimmune follow-up: A review[J]. World J Hepatol, 2017, 9(30): 1176-1189. | [23] | Zhang CS, Lin RY, Li ZD, et al. Immune exhaustion of T cells in alveolar echinococcosis patients and its reversal by blocking checkpoint receptor TIGIT in a murine model[J]. Hepatology, 2020, 71(4): 1297-1315. | [24] | Schmid M, Samonigg H, St?ger H, et al. Use of interferon gamma and mebendazole to stop the progression of alveolar hydatid disease: Case report[J]. Clin Infect Dis, 1995, 20(6): 1543-1546. | [25] | Liance M, Ricard-Blum S, Emery I, et al. Echinococcus multilocularis infection in mice: In vivo treatment with a low dose of IFN-gamma decreases metacestode growth and liver fibrogenesis[J]. Parasite, 1998, 5(3): 231-237. | [26] | 章宁. γ-干扰素在泡球蚴感染小鼠中的作用研究[D]. 乌鲁木齐: 新疆医科大学, 2020: 1-8. | | Zhang N. Study on the effect of interferon-γ in mice with Echinococcus multilocularis infection[D]. Urumqi: Xinjiang Medical University, 2020: 1-8. (in Chinese) |
|