CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2023, Vol. 41 ›› Issue (6): 683-690.doi: 10.12140/j.issn.1000-7423.2023.06.004
• ORIGINAL ARTICLES • Previous Articles Next Articles
WU Jiahui1(), SONG Xiao1,2, CHENG Peng1, LIU Hongmei1, GUO Xiuxia1, WANG Haifang1, GONG Maoqing1,*(
)
Received:
2023-03-31
Online:
2023-12-30
Published:
2023-12-28
Contact:
* E-mail: Supported by:
CLC Number:
WU Jiahui, SONG Xiao, CHENG Peng, LIU Hongmei, GUO Xiuxia, WANG Haifang, GONG Maoqing. Identification and analysis of miRNA targeting CYP450s genes in mosquitoes[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(6): 683-690.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2023.06.004
Table 1
Primer sequences of differentially expressed miRNAs and target genes
引物名称 Primer name | 引物序列(5'→3') Primer sequence (5'→3') |
---|---|
miR-11-5p-F | GCGAGAACTCCGGCTGTGA |
miR-317_3-F | CGTGAACACAGCTGGTGGTAT |
miR-278-3p_1-F | CGTCGGTGGGACTTTCGT |
miR-8-5p-F | CGCATCTTACCGGGCAGC |
miR-305-3p_5-F | CGCGGCACATGTTGGAGTA |
miR-UP-R | AGTGCAGGGTCCGAGGTATT |
U6-F | GCTTCGGCTGGACATATACTAAAAT |
U6-R | GAACGCTTCACGATTTTGCG |
CYP6a8-F | CGGATGATACGAAGAGCGACGATG |
CYP6a8-R | ACCCAGCCAAATAGAACACGAACG |
CYP6BB1v2-F | AGACCTGGAGCTGCGAGAAGTG |
CYP6BB1v2-R | TGTTGCCCATCTTTCGGAACTCT |
CYP6N22-F | TTGAACGAGATTGCCGCACAGG |
CYP6N22-R | ACTTCGAGAACATTCTGCCTTGCC |
CYP6N26P-F | CAGCACTTCCACGACCGTTCC |
CYP6N26P-R | CTCAGGTTCCGCCACTTGTTCC |
CYP9b2-F | GTTGGTGCCTGCTGCGATCTAC |
CYP9b2-R | CGAACGGAACTCCACGCTTCTC |
β-actin-F | AGGACTCGTACGTCGGTGAC |
β-actin-R | TGGTGCCAGATCTTCTCTCCAT |
[1] |
Meenambigai K, Kokila R, Chandhirasekar K, et al. Green synthesis of selenium nanoparticles mediated by nilgirianthus ciliates leaf extracts for antimicrobial activity on foodborne pathogenic microbes and pesticidal activity against Aedes aegypti with molecular docking[J]. Biol Trace Elem Res, 2022, 200(6): 2948-2962.
doi: 10.1007/s12011-021-02868-y |
[2] |
Mugenzi LMJ, Akosah-Brempong G, Tchouakui M, et al. Escalating pyrethroid resistance in two major malaria vectors Anopheles funestus and Anopheles gambiae (s.l.) in Atatam, Southern Ghana[J]. BMC Infect Dis, 2022, 22(1): 799.
doi: 10.1186/s12879-022-07795-4 pmid: 36284278 |
[3] |
Ghavami MB, Panahi S, Nabati SM, et al. A comprehensive survey of permethrin resistance in human head louse populations from northwest Iran: ex vivo and molecular monitoring of knockdown resistance alleles[J]. Parasit Vectors, 2023, 16(1): 57.
doi: 10.1186/s13071-023-05652-0 |
[4] |
Peng H, Wang HY, Guo XX, et al. In vitro and in vivo validation of CYP6A14 and CYP6N6 participation in deltamethrin metabolic resistance in Aedes albopictus[J]. Am J Trop Med Hyg, 2023, 108(3): 609-618.
doi: 10.4269/ajtmh.22-0524 |
[5] |
Montgomery M, Harwood JF, Yougang AP, et al. Spatial distribution of insecticide resistant populations of Aedes aegypti and Ae. albopictus and first detection of V410L mutation in Ae. aegypti from Cameroon[J]. Infect Dis Poverty, 2022, 11: 90.
doi: 10.1186/s40249-022-01013-8 pmid: 35974351 |
[6] |
Højland DH, Kristensen M. Analysis of differentially expressed genes related to resistance in spinosad- and neonicotinoid-resistant Musca domestica L. (Diptera ∶ Muscidae) strains[J]. PLoS One, 2017, 12(1): e0170935.
doi: 10.1371/journal.pone.0170935 |
[7] |
Itokawa K, Komagata O, Kasai S, et al. A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus[J]. Insect Biochem Mol Biol, 2015, 66: 96-102.
doi: 10.1016/j.ibmb.2015.10.006 |
[8] |
Chipman LB, Pasquinelli AE. miRNA targeting: growing beyond the seed[J]. Trends Genet, 2019, 35(3): 215-222.
doi: S0168-9525(18)30224-5 pmid: 30638669 |
[9] |
Mellis D, Caporali A. microRNA-based therapeutics in cardiovascular disease: screening and delivery to the target[J]. Biochem Soc Trans, 2018, 46(1): 11-21.
doi: 10.1042/BST20170037 |
[10] |
Bartel DP. Metazoan microRNAs[J]. Cell, 2018, 173(1): 20-51.
doi: S0092-8674(18)30286-1 pmid: 29570994 |
[11] |
Ofer D, Linial M. Inferring microRNA regulation: a proteome perspective[J]. Front Mol Biosci, 2022, 9: 916639.
doi: 10.3389/fmolb.2022.916639 |
[12] |
Prasad A, Sharma N, Muthamilarasan M, et al. Recent advances in small RNA mediated plant: virus interactions[J]. Crit Rev Biotechnol, 2019, 39(4): 587-601.
doi: 10.1080/07388551.2019.1597830 |
[13] |
Hoen PA, Ariyurek Y, Thygesen HH, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms[J]. Nucl Acid Res, 2008, 36(21): e141.
doi: 10.1093/nar/gkn705 |
[14] |
Wang LK, Feng ZX, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138.
doi: 10.1093/bioinformatics/btp612 pmid: 19855105 |
[15] |
Xu P, Wang JH, Sun B, et al. Integrated analysis of miRNA and mRNA expression data identifies multiple miRNAs regulatory networks for the tumorigenesis of colorectal cancer[J]. Gene, 2018, 659: 44-51.
doi: S0378-1119(18)30288-9 pmid: 29555201 |
[16] |
Galehdari H, Azarshin SZ, Bijanzadeh M, et al. Polymorphism studies on microRNA targetome of thalassemia[J]. Bioinformation, 2018, 14(5): 252-258.
doi: 10.6026/97320630014252 pmid: 30108424 |
[17] |
Liu SW, Xie X, Lei HJ, et al. Identification of key circRNAs/lncRNAs/miRNAs/mRNAs and pathways in preeclampsia using bioinformatics analysis[J]. Med Sci Monit, 2019, 25: 1679-1693.
doi: 10.12659/MSM.912801 |
[18] | Song X, Cheng P, Wang HF, et al. Study on insecticide resistance of Culex pipiens pallens in southwest region of Shandong Province[J]. Chin J Schisto Control, 2020, 32(1): 69-72. (in Chinese) |
(宋晓, 程鹏, 王海防, 等. 鲁西南地区淡色库蚊抗药性评价[J]. 中国血吸虫病防治杂志, 2020, 32(1): 69-72.) | |
[19] | Liu K, Huang HB, Yang GL. miRNA functions in parasite-related immune regulation in hosts[J]. Chin J Parasitol Parasit Dis, 2018, 36(4): 405-408. (in Chinese) |
(刘可, 黄海斌, 杨桂连. miRNA在寄生虫宿主免疫调控中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4): 405-408.) | |
[20] |
Sun XH, Xu N, Xu Y, et al. A novel miRNA, miR-13664, targets CpCYP314A1 to regulate deltamethrin resistance in Culex pipiens pallens[J]. Parasitology, 2019, 146(2): 197-205.
doi: 10.1017/S0031182018001002 pmid: 29966536 |
[21] |
Li XX, Hu SL, Yin HT, et al. miR-4448 is involved in deltamethrin resistance by targeting CYP4H31 in Culex pipiens pallens[J]. Parasit Vectors, 2021, 14(1): 159.
doi: 10.1186/s13071-021-04665-x |
[22] |
Lei ZT, Lv Y, Wang WJ, et al. miR-278-3p regulates pyrethroid resistance in Culex pipiens pallens[J]. Parasitol Res, 2015, 114(2): 699-706.
doi: 10.1007/s00436-014-4236-7 |
[23] |
Tian MM, Liu BQ, Hu HX, et al. miR-285 targets P450 (CYP6N23) to regulate pyrethroid resistance in Culex pipiens pallens[J]. Parasitol Res, 2016, 115(12): 4511-4517.
doi: 10.1007/s00436-016-5238-4 |
[24] |
van Dijk EL, Jaszczyszyn Y, Thermes C. Library preparation methods for next-generation sequencing: tone down the bias[J]. Exp Cell Res, 2014, 322(1): 12-20.
doi: 10.1016/j.yexcr.2014.01.008 pmid: 24440557 |
[25] | Zhong SH, Sun Y, Guo XL, et al. Identification and bioinformatics analysis of differentially expressed miRNAs in splenic lymphocytes in Echinococcus multilocularis infected mice[J]. Chin J Parasitol Parasit Dis, 2022, 40(3): 288-295. (in Chinese) |
(仲顺虎, 孙玥, 郭小腊, 等. 多房棘球蚴感染小鼠脾淋巴细胞中差异表达miRNA的鉴定及其生物信息学分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 288-295.) | |
[26] | Yang J, Xie M, Xu XJ, et al. Research progress of insect miRNAs[J]. Acta Entomol Sin, 2021, 64(2): 259-280. (in Chinese) |
(杨婕, 谢苗, 徐雪娇, 等. 昆虫miRNA研究进展[J]. 昆虫学报, 2021, 64(2): 259-280.) |
[1] | MA Yue, ZHAO Baocai, ZHOU Jiali, HU Junhao, ZHAO Hongxi. Research progress on the regulation of miRNA in the infection of apicomplexan parasites [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(6): 749-755. |
[2] | LIU Huaman, Bikash Giri, FANG Chuantao, ZHENG Yameng, WU Huixin, ZENG Minhao, LI Shan, CHENG Guofeng. Identification of gender associated m6A modified circRNA in Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 552-558. |
[3] | QIN Peixi, ZHOU Caixian, LU Zhigang, ZHANG Biying, ZHOU Taoxun, HU Min. Identification of miRNAs in the infectious third stage larvae and parasitic female adult of Strongyloides stercoralis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 412-420. |
[4] | XIE Yi, WANG Ying, WANG Xu, SHI Dandan, FU Meihua, LI Chunyang, WU Weiping, DAN Bazeli, LIAO Sa, ZHANG Kaige, DENG Xueying, GUAN Yayi. Investigation of fecal parasite pathogens in domestic dogs based on high-throughput sequencing [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 325-330. |
[5] | WANG Guan-xi, LI Ya-shu, LI Yue-yue, CAO Yuan-yuan, YANG Meng-meng, ZHANG Mei-hua, WU Jing-yao, LIANG Cheng, LI Ju-lin, ZHOU Hua-yun, TANG Jian-xia, ZHU Guo-ding. Resistance to deltamethrin and knockdown resistance mutation in Aedes albopictus from Jiangsu Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(4): 468-474. |
[6] | ZHONG Shun-hu, SUN Yue, GUO Xiao-la, ZHENG Ya-dong, CHEN Yi-xia. Identification and bioinformatics analysis of differentially expressed miRNAs in splenic lymphocytes in Echinococcus multilocularis-infected mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 288-294. |
[7] | ZHANG Ya-lan, JIANG Tian-tian, HE Zhi-quan, DENG Yan, CHEN Wei-qi, ZHU Yan-kun, ZHANG Hong-wei, ZHAO Dong-yang. Differential expression of microRNA in the liver of mice infected by Capillaria hepatica [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 56-60. |
[8] | ZHU Ling-qian, FENG Xin-yu, HU Wei, LI Shi-zhu. Functions and roles of miRNA during the infection of Anopheles by Plasmodium [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 742-748. |
[9] | HE Xing, PAN Wei-qing. Research progress on miRNA-mediated schistosome-host interactions [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(3): 259-262. |
[10] | Jie ZHOU, Chun-xiao LI, Ce-jie LAN, Jian GAO, Qin-mei LIU, Ai-juan SUN, Tong-yan ZHAO. Comparative analysis of antennal olfactory gene expression between Culex pipiens pallens and Culex pipiens molestus [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(4): 453-457. |
[11] | Shi-qiang FU, Hai-ning FAN, Hai-jiu WANG, Ying ZHOU, De-ping CAO, Yan-fei LI, Zhi-xin WANG, Li REN. Analysis of miRNA expression in Echinococcus granulosus protoscoleces isolated from sheep liver and lung [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(2): 137-143. |
[12] | Ke LIU, Hai-bin HUANG, Gui-lian YANG. miRNA functions in parasite-related immune regulation in hosts [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(4): 405-408. |
[13] | Meng-di REN, Yu-ye NING, Ming LI, Hao WANG, Wei ZHAO. Differential expression of circulating microRNAs in patients with cystic echinococcosis and screening for specific diagnostic biomarkers for the disease [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(5): 423-428. |
[14] | NAN Chun-yan1,2,MA Ya-jun2 *,XU Jian-nong3,LIANG Jian1. Taxonomic Composition of Metagenomic Community in the Larval Gut of Mosquito Anopheles sinensis(Diptera ∶ Culicidae) [J]. , 2013, 31(2): 7-114-119. |
[15] | LIShi-gen. Drug Resistance Evolution of Dichlorvos-Resistant and Cypermethrin-Resistant Strains of Culex pipiens pallens [J]. , 2009, 27(4): 18-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||