CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2023, Vol. 41 ›› Issue (4): 412-420.doi: 10.12140/j.issn.1000-7423.2023.04.003
• ORIGINAL ARTICLES • Previous Articles Next Articles
QIN Peixi1(), ZHOU Caixian1, LU Zhigang1,2, ZHANG Biying1, ZHOU Taoxun1, HU Min1,*(
)
Received:
2022-10-26
Revised:
2022-12-02
Online:
2023-08-30
Published:
2023-09-06
Contact:
*E-mail: Supported by:
CLC Number:
QIN Peixi, ZHOU Caixian, LU Zhigang, ZHANG Biying, ZHOU Taoxun, HU Min. Identification of miRNAs in the infectious third stage larvae and parasitic female adult of Strongyloides stercoralis[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 412-420.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2023.04.003
Table 1
Primers for verification of miRNAs differentially expressed between the infective third-stage larvae and parasitic female adults
引物名称 Primer name | 引物序列(5'→3') Primer sequence (5'→3') |
---|---|
sst-miR-86-5p-F | GCCGTAAGTGAATGCTTTGCCACAG |
sst-miR-86-5p-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACAGACTG | |
sst-miR-84-5p-F | CGGGCTGAGGTAGTGTTAAATATTG |
sst-miR-84-5p-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACAACAAT | |
sst-novel-104-F | CGGGCCTGAGGTAGTGTTAAATATTG |
sst-novel-104-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACAACAAT | |
sst-miR-92-3p-F | CGTATTGCACACGTCCCG |
sst-miR-92-3p-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACTCAGGC | |
sst-miR-34a-3p-F | GCGCGACAGCTCACTCAACT |
sst-miR-34a-3p-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACCTTGGC | |
sst-miR-81a-5P-F | CGGGCATGGGTCTATATGATTCTC |
sst-miR-81a-5P-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACCATGAG | |
sst-miR-1-3p-F | CGCCCGTGGAATGTAAAGAAG |
sst-miR-1-3p-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACTGCATA | |
sst-novel-108-F | TTTGCGACCGAATCCAGGC |
sst-novel-108-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACTGTGGC | |
sst-miR-124-5p-F | GCGCTTTCATCCGTGACTTTAG |
sst-miR-124-5p-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACCGACCT | |
sst-miR-50-3p-F | CGGCCCGCGAGTAATATTAGACATATCG |
sst-miR-50-3p-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACCTCGAT | |
sst-novel-51-F | TTAAGGCACGCGGTGAATG |
sst-novel-51-loop | GTCGTATCCAGTGCAGGGTCCGAGGTAT- |
TCGCACTGGATACGACTTGGCA | |
sst-miRNA-R | AGTGCAGGGTCCGAGGTATT |
sst-GAPDH-F | ACTGGTGCAGCTAAAGCTGTAGG |
sst-GAPDH-loop | GTCGTATCCAGTGCAGGGTCCGAGG |
Table 2
Sequencing data of small RNAs of infective third-stage larvae and parasitic female adults of S. stercoralis
样品名称 Sample name | 原始序列 Raw sequence | 总读数 Total bases | GC含量/% GC content/% | 质量值大于20的碱基数占比% Q20/% | 质量值大于20的碱基数占比% Q20/% | 总匹配数 Total mapped | 总匹配率/% Total mapped/% |
---|---|---|---|---|---|---|---|
iL3-1 | 24 795 684 | 0.553 G | 50.19 | 99.56 | 95.79 | 22 785 621 | 92.0 |
iL3-2 | 24 937 291 | 0.550 G | 48.53 | 99.49 | 95.04 | 22 400 131 | 89.8 |
iL3-3 | 23 295 886 | 0.526 G | 47.99 | 99.14 | 96.47 | 19 707 809 | 84.9 |
pF-1 | 23 853 139 | 0.533 G | 49.26 | 99.52 | 95.90 | 13 335 379 | 56.2 |
pF-2 | 23 698 225 | 0.529 8 G | 50.98 | 99.48 | 94.92 | 12 059 955 | 51.1 |
pF-3 | 23 735 746 | 0.544 G | 49.43 | 99.43 | 94.78 | 12 608 177 | 53.7 |
Table 3
Novel miRNA of fold chang > 2 and transcripts per million > 1 000 of infective third-stage larvae and paracitic female adults
miRNA名称miRNA name | log2(差异倍数) log2 (Fold change) | iL3 TPM | pF TPM |
---|---|---|---|
sst-novel-108 | -2.408 | 132 509 | 24 969 |
sst-novel-16 | 2.022 | 3 213 | 13 050 |
sst-novel-134 | -1.600 | 21 202 | 6 996 |
sst-novel-117 | -2.052 | 12 863 | 3 102 |
sst-novel-22 | -1.799 | 3 548 | 1 020 |
sst-novel-18 | 1.983 | 2 330 | 9 209 |
sst-novel-9 | -1.661 | 13 859 | 4 383 |
sst-novel-106 | 1.453 | 14 141 | 38 714 |
sst-novel-7 | -2.531 | 18 005 | 3 115 |
sst-novel-120 | 1.326 | 2 698 | 6 766 |
sst-novel-19 | -1.108 | 4 890 | 2 268 |
sst-novel-10 | -1.202 | 13 289 | 5 774 |
[1] |
Beknazarova M, Whiley H, Ross K. Strongyloidiasis: a disease of socioeconomic disadvantage[J]. Int J Environ Res Public Health, 2016, 13(5): 517.
doi: 10.3390/ijerph13050517 |
[2] |
Olsen A, van Lieshout L, Marti H, et al. Strongyloidiasis: the most neglected of the neglected tropical diseases?[J]. Trans R Soc Trop Med Hyg, 2009, 103(10): 967-972.
doi: 10.1016/j.trstmh.2009.02.013 |
[3] |
Puthiyakunnon S, Boddu S, Li YJ, et al. Strongyloidiasis: an insight into its global prevalence and management[J]. PLoS Negl Trop Dis, 2014, 8(8): e3018.
doi: 10.1371/journal.pntd.0003018 |
[4] | Hu JY. The establishment of Strongyloides stercoralis infected geril model and initial attempt to establish CRISPR/Cas9 knockout method[D]. Wuhan: Huazhong Agricultural University, 2018: 2. (in Chinese) |
(胡锦阳. 粪类圆线虫感染沙鼠模型的建立及CRISPR/Cas9基因敲除方法的初步尝试[D]. 武汉: 华中农业大学, 2018: 2.) | |
[5] |
Marcos LA, Terashima A, Dupont HL, et al. Strongyloides hyperinfection syndrome: an emerging global infectious disease[J]. Trans R Soc Trop Med Hyg, 2008, 102(4): 314-318.
doi: 10.1016/j.trstmh.2008.01.020 |
[6] |
Starr MC, Montgomery SP. Soil-transmitted helminthiasis in the United States: a systematic review: 1940—2010[J]. Am J Trop Med Hyg, 2011, 85(4): 680-684.
doi: 10.4269/ajtmh.2011.11-0214 |
[7] |
Vasquez-Rios G, Pineda-Reyes R, Pineda-Reyes J, et al. Strongyloides stercoralis hyperinfection syndrome: a deeper understanding of a neglected disease[J]. J Parasit Dis, 2019, 43(2): 167-175.
doi: 10.1007/s12639-019-01090-x |
[8] |
Hammond SM. An overview of microRNAs[J]. Adv Drug Deliv Rev, 2015, 87: 3-14.
doi: 10.1016/j.addr.2015.05.001 |
[9] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993, 75(5): 843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621 |
[10] |
Pasquini G, Kunej T. A map of the microRNA regulatory networks identified by experimentally validated microRNA-target interactions in five domestic animals: cattle, pig, sheep, dog, and chicken[J]. OMICS, 2019, 23(9): 448-456.
doi: 10.1089/omi.2019.0082 pmid: 31381467 |
[11] |
Song XW, Li Y, Cao XF, et al. microRNAs and their regulatory roles in plant-environment interactions[J]. Annu Rev Plant Biol, 2019, 70: 489-525
doi: 10.1146/annurev-arplant-050718-100334 pmid: 30848930 |
[12] |
Ulusan Bağcı Ö, Caner A. The role of microRNAs in parasitology[J]. Turkiye Parazitol Derg, 2020, 44(2): 102-108.
doi: 10.4274/tpd.galenos.2020.6776 pmid: 32482043 |
[13] |
Ahmed R, Chang ZS, Younis AE, et al. Conserved miRNAs are candidate post-transcriptional regulators of developmental arrest in free-living and parasitic nematodes[J]. Genome Biol Evol, 2013, 5(7): 1246-1260.
doi: 10.1093/gbe/evt086 pmid: 23729632 |
[14] |
Ma GX, Luo YF, Zhu HH, et al. microRNAs of Toxocara canis and their predicted functional roles[J]. Parasit Vectors, 2016, 9: 229.
doi: 10.1186/s13071-016-1508-3 |
[15] |
Winter AD, Weir W, Hunt M, et al. Diversity in parasitic nematode genomes: the microRNAs of Brugia pahangi and Haemonchus contortus are largely novel[J]. BMC Genomics, 2012, 13: 4.
doi: 10.1186/1471-2164-13-4 pmid: 22216965 |
[16] |
Xu MJ, Fu JH, Nisbet AJ, et al. Comparative profiling of microRNAs in male and female adults of Ascaris suum[J]. Parasitol Res, 2013, 112(3): 1189-1195.
doi: 10.1007/s00436-012-3250-x |
[17] |
Pomari E, Malerba G, Veschetti L, et al. Identification of miRNAs of Strongyloides stercoralis L1 and iL3 larvae isolated from human stool[J]. Sci Rep, 2022, 12(1): 9957.
doi: 10.1038/s41598-022-14185-y pmid: 35705621 |
[18] | Zhang Y. Genome-wide identfication and characterization of novel LncRNAs and extracellular vesicle preliminary study in Strongyloides stercoralis[D]. Wuhan: Huazhong Agricultural University, 2019: 17. (in Chinese) |
(张映. 粪类圆线虫lncRNA的鉴定和验证以及细胞外囊泡的初步研究[D]. 武汉: 华中农业大学, 2019: 17.) | |
[19] |
Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biol, 2009, 10(3): R25.
doi: 10.1186/gb-2009-10-3-r25 |
[20] |
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[21] | Hunt VL, Tsai IJ, Coghlan A, et al. The genomic basis of parasitism in the Strongyloides clade of nematodes[J]. Nat Genet, 2016, 48(3): |
[22] |
Britton C, Laing R, Devaney E. Small RNAs in parasitic nematodes-forms and functions[J]. Parasitology, 2020, 147(8): 855-864.
doi: 10.1017/S0031182019001689 |
[23] |
Liu N, Landreh M, Cao KJ, et al. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila[J]. Nature, 2012, 482(7386): 519-523.
doi: 10.1038/nature10810 |
[24] |
Yang JR, Chen DP, He YN, et al. miR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9[J]. Age, 2013, 35(1): 11-22.
doi: 10.1007/s11357-011-9324-3 |
[25] |
Isik M, Blackwell TK, Berezikov E. microRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans[J]. Sci Rep, 2016, 6: 36766.
doi: 10.1038/srep36766 |
[26] |
Boulias K, Horvitz HR. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO[J]. Cell Metab, 2012, 15(4): 439-450.
doi: 10.1016/j.cmet.2012.02.014 |
[27] |
Zhang XC, Zabinsky R, Teng YD, et al. microRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause[J]. Proc Natl Acad Sci USA, 2011, 108(44): 17997-18002.
doi: 10.1073/pnas.1105982108 |
[28] |
Pérez MG, Spiliotis M, Rego N, et al. Deciphering the role of miR-71 in Echinococcus multilocularis early development in vitro[J]. PLoS Negl Trop Dis, 2019, 13(12): e0007932.
doi: 10.1371/journal.pntd.0007932 |
[29] |
Zheng YD, Guo XL, He W, et al. Effects of Echinococcus multilocularis miR-71 mimics on murine macrophage RAW264.7 cells[J]. Int Immunopharmacol, 2016, 34: 259-262.
doi: 10.1016/j.intimp.2016.03.015 |
[30] |
Yang ML, Wang YL, Jiang F, et al. miR-71 and miR-263 jointly regulate target genes chitin synthase and chitinase to control locust molting[J]. PLoS Genet, 2016, 12(8): e1006257.
doi: 10.1371/journal.pgen.1006257 |
[31] |
Davis MW, Birnie AJ, Chan AC, et al. A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans[J]. Development, 2004, 131(23): 6001-6008.
doi: 10.1242/dev.01454 |
[32] |
Gamble HR, Purcell JP, Fetterer RH. Purification of a 44 kilodalton protease which mediates the ecdysis of infective Haemonchus contortus larvae[J]. Mol Biochem Parasitol, 1989, 33(1): 49-58.
doi: 10.1016/0166-6851(89)90041-8 |
[33] |
Stepek G, McCormack G, Birnie AJ, et al. The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematodes[J]. Parasitology, 2011, 138(2): 237-248.
doi: 10.1017/S0031182010001113 pmid: 20800010 |
[34] |
Audhya A, Desai A, Oegema K. A role for Rab5 in structuring the endoplasmic reticulum[J]. J Cell Biol, 2007, 178(1): 43-56.
pmid: 17591921 |
[35] |
Sann SB, Crane MM, Lu H, et al. Rabx-5 regulates RAB-5 early endosomal compartments and synaptic vesicles in C. elegans[J]. PLoS One, 2012, 7(6): e37930.
doi: 10.1371/journal.pone.0037930 |
[36] |
Kamikura DM, Cooper JA. Clathrin interaction and subcellular localization of Ce-DAB-1, an adaptor for protein secretion in Caenorhabditis elegans[J]. Traffic, 2006, 7(3): 324-336.
pmid: 16497226 |
[1] | LIU Huaman, Bikash Giri, FANG Chuantao, ZHENG Yameng, WU Huixin, ZENG Minhao, LI Shan, CHENG Guofeng. Identification of gender associated m6A modified circRNA in Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 552-558. |
[2] | XIAO Chang-lin, YANG Liu-liu, FANG Yong, FENG Xi-lian. A case of pulmonary combined infection of Strongyloides stercoralis with Nocardia otitidiscaviarum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 810-812. |
[3] | ZHONG Shun-hu, SUN Yue, GUO Xiao-la, ZHENG Ya-dong, CHEN Yi-xia. Identification and bioinformatics analysis of differentially expressed miRNAs in splenic lymphocytes in Echinococcus multilocularis-infected mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 288-294. |
[4] | ZHANG Ya-lan, JIANG Tian-tian, HE Zhi-quan, DENG Yan, CHEN Wei-qi, ZHU Yan-kun, ZHANG Hong-wei, ZHAO Dong-yang. Differential expression of microRNA in the liver of mice infected by Capillaria hepatica [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 56-60. |
[5] | ZHU Ling-qian, FENG Xin-yu, HU Wei, LI Shi-zhu. Functions and roles of miRNA during the infection of Anopheles by Plasmodium [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 742-748. |
[6] | HE Xing, PAN Wei-qing. Research progress on miRNA-mediated schistosome-host interactions [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(3): 259-262. |
[7] | Shi-qiang FU, Hai-ning FAN, Hai-jiu WANG, Ying ZHOU, De-ping CAO, Yan-fei LI, Zhi-xin WANG, Li REN. Analysis of miRNA expression in Echinococcus granulosus protoscoleces isolated from sheep liver and lung [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(2): 137-143. |
[8] | Ke LIU, Hai-bin HUANG, Gui-lian YANG. miRNA functions in parasite-related immune regulation in hosts [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(4): 405-408. |
[9] | Meng-di REN, Yu-ye NING, Ming LI, Hao WANG, Wei ZHAO. Differential expression of circulating microRNAs in patients with cystic echinococcosis and screening for specific diagnostic biomarkers for the disease [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(5): 423-428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||