CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2019, Vol. 37 ›› Issue (5): 603-608.doi: 10.12140/j.issn.1000-7423.2019.05.017
• REVIEWS • Previous Articles Next Articles
Zhen CAI(), Xi YU, Gong CHENG*(
)
Received:
2019-06-30
Online:
2019-10-30
Published:
2019-11-07
Contact:
Gong CHENG
E-mail:caizhencc@126.com;gongcheng@mail.tsinghua.edu.cn
Supported by:
CLC Number:
Zhen CAI, Xi YU, Gong CHENG. Progress towards mosquito microbiome on regulating the transmission of mosquito-borne diseases[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(5): 603-608.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2019.05.017
[1] | Backhed F.Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717): 1915-1920. |
[2] | 刘婧, 陈丹, 庄桂芬, 等. 家蝇发育过程中肠道可培养共生细菌的分离与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(2): 120-124. |
[3] | Abt MC, Pamer EG.Commensal bacteria mediated defenses against pathogens[J]. Curr Opin Immunol, 2014, 29: 16-22. |
[4] | Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal Microbiota[J]. Science, 2011, 334(6053): 245-249. |
[5] | Dennison NJ, Jupatanakul N, Dimopoulos G.The mosquito Microbiota influences vector competence for human pathogens[J]. Curr Opin Insect Sci, 2014, 3: 6-13. |
[6] | Hay SI, Okiro EA, Gething PW, et al. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007[J]. PLoS Med, 2010, 7(6): e1000290. |
[7] | Murray NE, Quam MB, Wilder-Smith A.Epidemiology of dengue: past, present and future prospects[J]. Clin Epidemiol, 2013, 5: 299-309. |
[8] | Gulland A.Death toll from malaria is double the WHO estimate, study finds[J]. BMJ, 2012, 344: e895. |
[9] | 张丽, 丰俊, 张少森, 等. 2018年全国疟疾疫情特征及消除工作进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(3): 241-247. |
[10] | Cheng G, Liu Y, Wang PH, et al. Mosquito defense strategies against Viral infection[J]. Trends Parasitol, 2016, 32(3): 177-186. |
[11] | Ramirez JL, Souza-Neto J, Torres Cosme R, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut Microbiota, innate immune system and dengue virus influences vector competence[J]. PLoS Negl Trop Dis, 2012, 6(3): e1561. |
[12] | Belkaid Y, Hand TW.Role of the Microbiota in immunity and inflammation[J]. Cell, 2014, 157(1): 121-141. |
[13] | Kuss SK, Best GT, Etheredge CA, et al. Intestinal Microbiota promote enteric virus replication and systemic pathogenesis[J]. Science, 2011, 334(6053): 249-252. |
[14] | Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal Microbiota[J]. Science, 2011, 334(6053): 245-249. |
[15] | Fang J.Ecology: A world without mosquitoes[J]. Nature, 2010, 466(7305): 432-434. |
[16] | Ricci I, Damiani C, Capone A, et al. Mosquito/Microbiota interactions: from complex relationships to biotechnological perspectives[J]. Curr Opin Microbiol, 2012, 15(3): 278-284. |
[17] | Terenius O, Lindh JM, Eriksson-Gonzales K, et al. Midgut bacterial dynamics in Aedes aegypti[J]. FEMS Microbiol Ecol, 2012, 80(3): 556-565. |
[18] | 王晓明, 吴焜, 陈晓光, 等. 蚊虫共生微生物群多样性及功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(3): 305-311. |
[19] | Coon KL, Vogel KJ, Brown MR, et al. Mosquitoes rely on their gut Microbiota for development[J]. Mol Ecol, 2014, 23(11): 2727-2739. |
[20] | Wang Y, Gilbreath TM, Kukutla P, et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PLoS One, 2011, 6(9): e24767. |
[21] | Gimonneau G, Tchioffo MT, Abate L, et al. Composition of Anopheles coluzzii and Anopheles gambiae Microbiota from larval to adult stages[J]. Infect Genet Evol, 2014, 28: 715-724. |
[22] | Gusmão DS, Santos AV, Marini DC, et al. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera : Culicidae) (L.) and dynamics of bacterial colonization in the midgut[J]. Acta Trop, 2010, 115(3): 275-281. |
[23] | Osei-Poku J, Mbogo CM, Palmer WJ, et al. Deep sequencing reveals extensive variation in the gut Microbiota of wild mosquitoes from Kenya[J]. Mol Ecol, 2012, 21(20): 5138-5150. |
[24] | Zouache K, Raharimalala FN, Raquin V, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar[J]. FEMS Microbiol Ecol, 2011, 75(3): 377-389. |
[25] | Boissière A, Tchioffo MT, Bachar D, et al. Midgut Microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection[J]. PLoS Pathog, 2012, 8(5): e1002742. |
[26] | Favia G, Ricci I, Damiani C, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector[J]. Proc Natl Acad Sci USA, 2007, 104(21): 9047-9051. |
[27] | Mancini MV, Damiani C, Accoti A, et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing[J]. BMC Microbiol, 2018, 18(1): 126. |
[28] | Apte-Deshpande AD, Paingankar MS, Gokhale MD, et al. Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus[J]. Indian J Med Res, 2014, 139(5): 762-768. |
[29] | Apte-Deshpande A, Paingankar M, Gokhale MD, et al. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus[J]. PLoS One, 2012, 7(7): e40401. |
[30] | Wu P, Sun P, Nie KX, ,et al. A gut commensal Bacterium promotes mosquito permissiveness to Arboviruses[J]. Cell Host Microbe, 2019, 25(1): 101-112.e5. |
[31] | Peng J, Zhong JR, Granados R.A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae[J]. J Insect Physiol, 1999, 45(2): 159-166. |
[32] | Fang SL, Wang L, Guo W, et al. Bacillus thuringiensis Bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin[J]. Appl Environ Microbiol, 2009, 75(16): 5237-5243. |
[33] | Marroquín-Cardona AG, Johnson NM, Phillips TD, et al. Mycotoxins in a changing global environment: a review[J]. Food Chem Toxicol, 2014, 69: 220-230. |
[34] | Antonissen G, Martel A, Pasmans F, et al. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases[J]. Toxins (Basel), 2014, 6(2): 430-452. |
[35] | Maketon M, Amnuaykanjanasin A, Kaysorngup A.A rapid knockdown effect of Penicillium citrinum for control of the mosquito Culex quinquefasciatus in Thailand[J]. World J Microbiol Biotechnol, 2014, 30(2): 727-736. |
[36] | Scholte EJ, Knols BG, Samson RA, et al. Entomopathogenic Fungi for mosquito control: a review[J]. J Insect Sci, 2004, 4: 19. |
[37] | Angleró-Rodríguez YI, Talyuli OA, Blumberg BJ, et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity[J]. Elife, 2017, 6: e28844. |
[38] | Ramirez JL, Short SM, Bahia AC, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities[J]. PLoS Pathog, 2014, 10(10): e1004398. |
[39] | Saraiva RG, Fang JR, Kang S, et al. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein[J]. PLoS Negl Trop Dis, 2018, 12(4): e0006443. |
[40] | 郭秀霞, 王怀位. 蚊虫先天免疫分子机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(1): 52-57. |
[41] | 郑文琪, 苏秀兰. 抗菌肽的抗疟原虫活性及作用机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 643-647. |
[42] | Blandin S, Levashina EA.Mosquito immune responses against malaria parasites[J]. Curr Opin Immunol, 2004, 16(1): 16-20. |
[43] | Dong YM, Morton JC Jr, Ramirez JL, et al. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti[J]. Insect Biochem Mol Biol, 2012, 42(2): 126-132. |
[44] | Scholte EJ, Knols BG, Takken W.Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity[J]. J Invertebr Pathol, 2006, 91(1): 43-49. |
[45] | Jaronski ST.Ecological factors in the inundative use of fungal entomopathogens[J]. Bio Control, 2010, 55(1): 159-185. |
[46] | Zimmermann G.Review on safety of the entomopathogenic fungus Metarhizium anisopliae[J]. Biocontrol Sci Technol, 2007, 17(9): 879-920. |
[47] | Garza-Hernández JA, Rodríguez-Pérez MA, Salazar MI, et al. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae[J]. PLoS Negl Trop Dis, 2013, 7(3): e2013. |
[48] | Fang WG, Vega-Rodríguez J, Ghosh AK, et al. Development of transgenic Fungi that kill human malaria parasites in mosquitoes[J]. Science, 2011, 331(6020): 1074-1077. |
[49] | Thomas MB, Read AF.Can fungal biopesticides control malaria?[J]. Nat Rev Microbiol, 2007, 5(5): 377-383. |
[50] | Smith RC, Vega-Rodríguez J, Jacobs-Lorena M.The Plasmodium bottleneck: malaria parasite losses in the mosquito vector[J]. Mem Inst Oswaldo Cruz, 2014, 109(5): 644-661. |
[51] | Cirimotich CM, Ramirez JL, Dimopoulos G.Native Microbiota shape insect vector competence for human pathogens[J]. Cell Host Microbe, 2011, 10(4): 307-310. |
[52] | Ramirez JL, Dimopoulos G.The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes[J]. Dev Comp Immunol, 2010, 34(6): 625-629. |
[53] | Frolet C, Thoma M, Blandin S, et al. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei[J]. Immunity, 2006, 25(4): 677-685. |
[54] | Souza-Neto JA, Sim S, Dimopoulos G.An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense[J]. Proc Natl Acad Sci USA, 2009, 106(42): 17841-17846. |
[55] | Xi ZY, Ramirez JL, Dimopoulos G.The Aedes aegypti toll pathway controls dengue virus infection[J]. PLoS Pathog, 2008, 4(7): e1000098. |
[56] | Meister S, Kanzok SM, Zheng XL, et al. Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2005, 102(32): 11420-11425. |
[57] | Garver LS, Bahia AC, Das S, et al. Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action[J]. PLoS Pathog, 2012, 8(6): e1002737. |
[58] | Dostert C, Jouanguy E, Irving P, et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila[J]. Nat Immunol, 2005, 6(9): 946-953. |
[59] | Kakumani PK, Ponia SS, Rajgokul KS, et al. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor[J]. J Virol, 2013, 87(16): 8870-8883. |
[60] | Wang SB, Ghosh AK, Bongio N, et al. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes[J]. Proc Natl Acad Sci USA, 2012, 109(31): 12734-12739. |
[1] | LI Xiaoqin, LAI Yashi, CHEN Yu, LV Jiahui, WEI Shuai, ZHANG Lilin, HE Shanshan, SHI Yunliang, LI Yanwen. Ultrastructural observation on excystment of metacercaria of Clonorchis sinensis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 601-608. |
[2] | GUO Su-ying, ZHU Hong-qing, CAO Chun-li, DENG Wang-ping, BAO Zi-ping, JIA Tie-wu, LI Yin-long, LV Chao, QIN Zhi-qiang, ZHANG Li-juan, FENG Ting, YANG Fan, LV Shan, XU Jing, LI Shi-zhu. Risk assessment of schistosomiasis transmission along the middle and lower reaches of Yangtze River after flooding in 2020 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 753-758. |
[3] | WU Jia-li, LI Bo, LIU Si, TU Zu-wu, TANG Li, TU Zhen, ZHOU Xiao-rong, SUN Ling-cong, XIAO Ying, ZHU Hong. Assessment of transmission risk of human schistosomiasis japonica based on human population antibody level in Hubei Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(5): 578-584. |
[4] | ZHU Hui-hui, ZHU Ting-jun, CHEN Ying-dan, DENG Zhuo-hui, XU Jing, ZHOU Chang-hai, QIAN Men-bao, QIN Zhi-qiang, HUANG Ji-lei, LV Chao, ZHANG Mi-zhen, LI Shi-zhu. The impact of COVID-19 epidemic on the control of important parasitic diseases [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(3): 365-369. |
[5] | GONG Yan-feng, HU Xiao-kang, ZHOU Zheng-bin, ZHU Hui-hui, HAO Yu-wan, WANG Qiang, ZHANG Yi, LI Shi-zhu. Ecological niche modeling-based prediction on transmission risk of visceral leishmaniasis in the extension region of Loess Plateau, China [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(2): 218-225. |
[6] | WU Yu-di, LIU Fei, YANG Fan, CAO Ya-ming. Expression and function of a potential antigen Pb280 as transmission-blocking vaccine in Plasmodium berghei [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 710-717. |
[7] | PEI Ting-wei, YU Zhi-jun, LIU Jing-ze. Research progress on microRNAs of ticks [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 771-776. |
[8] | Xiao-kang HU, Shang XIA, Yun-hai GUO, Yu-wan HAO, Jing-bo XUE, Shan LV, Jing XU, Shi-zhu LI. Ecological niche modeling and its applications in research on transmission risks of parasitic diseases [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(2): 238-244. |
[9] | HU Xiao-kang, HAO Yu-wan, XIA Shang, GUO Yun-hai, XUE Jing-bo, ZHANG Yun, WANG Li-fang, DONG Yi, XU Jing, LI Shi-zhu. Detection of schistosomiasis transmission risks in Yunnan Province based on ecological niche modeling [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(1): 80-87. |
[10] | Yin-long LI, Zhang-ke YU, You-xing LI, Ding-hua AI, Ping ZHANG, Zhao-jun LI, Dan-dan LIN, Jing XU. Case management for those with positive anti-Schistosoma antibody in Poyang Lake of Jiangxi Province area after transmission control [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(6): 665-669. |
[11] | Yi-feng LI, Li-yuan ZHOU, Zhang-ke YU, Jing XU, Rui CHEN, Ping ZHANG, Yi-wen LIU, Dan-dan LIN, Shi-zhu LI. SWOT analysis of blocking schistosomiasis transmission in cooperative innovative demonstration areas in Jiangxi Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(6): 694-698. |
[12] | Wen-qi ZHENG, Jun-rui WANG, Hua WANG, Fei LIU, En-jie LUO, Ya-ming CAO, Yan-qiu HAN. Truncated Plasmodium berghei putative secreted ookinete protein 7 induces transmission-blocking immunity [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(5): 520-525. |
[13] | Qiang MAO, Fu-quan PEI, Yong-zhen CEN, Meng-ran LIU, Hao ZHANG, Zhuo-hui DENG. Laboratory testing and traceability analysis of a case of transfusion-transmitted falciparum malaria in Guangdong Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(5): 529-533. |
[14] | Yun-liang SHI, Xiao-ling WAN, Zhi-hua JIANG, Xiao-jing CHENG, Yi-chao YANG. Scanning electron microscopic and transmission electron microscopic observations of the tegument structure of adult Clonorchis sinensis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(2): 184-186. |
[15] | Xiao-jun MENG, Sheng-hua ZONG, Dong-lin GAO, Xuan ZHANG, Yan-hua QIAN, Bing LU. Risk assessment of schistosome infection after transmission interruption based on the fuzzy comprehensive evaluation method [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(6): 626-628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||