CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2021, Vol. 39 ›› Issue (1): 1-7.doi: 10.12140/j.issn.1000-7423.2021.01.001
• INVITED REVIEWS • Previous Articles Next Articles
LIU Tong(), WU Yang, LIU Pei-wen, YANG Wen-qiang, JIN Bin-bin, GU Jin-bao, CHEN Xiao-guang*(
)
Received:
2020-12-07
Revised:
2021-01-08
Online:
2021-02-28
Published:
2021-03-10
Contact:
CHEN Xiao-guang
E-mail:729987610@qq.com;xgchen@smu.edu.cn
Supported by:
CLC Number:
LIU Tong, WU Yang, LIU Pei-wen, YANG Wen-qiang, JIN Bin-bin, GU Jin-bao, CHEN Xiao-guang. Olfactory perception and sex determination of vector mosquitoes[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(1): 1-7.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2021.01.001
蚊种 | 基因家族 | 基因名称 | 相关行为 | 参考文献 |
---|---|---|---|---|
冈比亚按蚊 | ORs | Or1 | 人体气味 | [33] |
IRs | Ir75k | 含羧酸的化合物 | [34] | |
IRs | Ir76b | 丁胺探测 | [34] | |
OBPs | Obp1 | 驱避剂 | [35] | |
OBPs | Obp1、3、4、5、20、47 | 植物驱避剂 | [36] | |
白纹伊蚊 | ORs | Or7、Or10、Or88 | 宿主偏好性 | [28] |
OBPs | Obp37、39 | 气味分子转导 | [37] | |
埃及伊蚊 | ORs | Or4 | 宿主偏好性 | [38] |
IRs | Ir8a | 乳酸探测 | [32] | |
致倦库蚊 | ORs | Or114、117 | 吸血行为 | [39] |
ORs | Or136 | 驱避剂DEET与茉莉酸甲酯探测 | [29] | |
OBPs | Obp1 | 产卵地选择 | [40] | |
OBPs | Obp5 | 产卵信息素 | [41] |
[1] |
Liu C, Pitts RJ, Bohbot JD, et al. Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae[J]. PLoS Biol, 2010,8(8):e1000467.
doi: 10.1371/journal.pbio.1000467 pmid: 20824161 |
[2] |
Lutz EK, Lahondère C, Vinauger C, et al. Olfactory learning and chemical ecology of olfaction in disease vector mosquitoes: a life history perspective[J]. Curr Opin Insect Sci, 2017,20:75-83.
doi: 10.1016/j.cois.2017.03.002 pmid: 28602240 |
[3] |
Chadee DD, Sutherland JM, Gilles JRL. Diel sugar feeding and reproductive behaviours of Aedes aegypti mosquitoes in Trinidad: with implications for mass release of sterile mosquitoes[J]. Acta Trop, 2014,132:S86-S90.
doi: 10.1016/j.actatropica.2013.09.019 |
[4] |
Barredo E, DeGennaro M. Not just from blood: mosquito nutrient acquisition from nectar sources[J]. Trends Parasitol, 2020,36(5):473-484.
doi: 10.1016/j.pt.2020.02.003 pmid: 32298634 |
[5] |
Vargo AM, Foster WA. Responsiveness of female Aedes aegypti (Diptera : Culicidae) to flower extracts[J]. J Med Entomol, 1982,19(6):710-718.
doi: 10.1093/jmedent/19.6.710 |
[6] |
Mauer DJ, Rowley WA. Attraction of Culex pipiens pipiens (Diptera : Culicidae) to flower volatiles[J]. J Med Entomol, 1999,36(4):503-507.
doi: 10.1093/jmedent/36.4.503 pmid: 10467780 |
[7] |
Otienoburu PE, Ebrahimi B, Phelan PL, et al. Analysis and optimization of a synthetic milkweed floral attractant for mosquitoes[J]. J Chem Ecol, 2012,38(7):873-881.
doi: 10.1007/s10886-012-0150-6 |
[8] |
Nyasembe VO, Torto B. Volatile phytochemicals as mosquito semiochemicals[J]. Phytochem Lett, 2014,8:196-201.
doi: 10.1016/j.phytol.2013.10.003 |
[9] |
Yu BT, Hu Y, Ding YM, et al. Feeding on different attractive flowering plants affects the energy reserves of Culex pipiens pallens adults[J]. Parasitol Res, 2018,117(1):67-73.
doi: 10.1007/s00436-017-5664-y pmid: 29177970 |
[10] |
Gouagna LC, Kerampran R, Lebon C, et al. Sugar-source preference, sugar intake and relative nutritional benefits in Anopheles arabiensis males[J]. Acta Trop, 2014,132:S70-S79.
doi: 10.1016/j.actatropica.2013.09.022 |
[11] |
Hapairai LK, Joseph H, Sang MA, et al. Field evaluation of selected traps and lures for monitoring the filarial and arbovirus vector, Aedes polynesiensis (Diptera : Culicidae), in French Polynesia[J]. J Med Entomol, 2013,50(4):731-739.
doi: 10.1603/me12270 pmid: 23926770 |
[12] |
Li Y, Su X, Zhou G, et al. Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes[J]. Parasit Vectors, 2016,9(1):446.
doi: 10.1186/s13071-016-1724-x pmid: 27519419 |
[13] | Takken W, Costantini C, Dolo G, et al. Mosquito mating behaviour[M] //Bridging laboratory and field research for genetic control of disease vectors. Dordrecht: Springer Netherlands, 2006: 183-188. |
[14] |
Pitts RJ, Mozūraitis R, Gauvin-Bialecki A, et al. The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes[J]. Acta Trop, 2014,132:S26-S34.
doi: 10.1016/j.actatropica.2013.09.005 |
[15] |
Cabrera M, Jaffe K. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera : Culicidae)[J]. J Am Mosq Control Assoc, 2007,23(1):1-10.
doi: 10.2987/8756-971X(2007)23[1:AAPMLB]2.0.CO;2 pmid: 17536361 |
[16] |
Fawaz EY, Allan SA, Bernier UR, et al. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating behavior of Aedes aegypti[J]. J Vector Ecol, 2014,39(2):347-354.
doi: 10.1111/jvec.12110 |
[17] |
Anton S, van Loon JJ, Meijerink J, et al. Central projections of olfactory receptor neurons from single antennal and palpal sensilla in mosquitoes[J]. Arthropod Struct Dev, 2003,32(4):319-327.
doi: 10.1016/j.asd.2003.09.002 |
[18] |
Seenivasagan T, Sharma KR, Shrivastava A, et al. Surface morphology and morphometric analysis of sensilla of Asian tiger mosquito, Aedes albopictus (Skuse): an SEM investigation[J]. J Vector Borne Dis, 2009,46(2):125-135.
pmid: 19502692 |
[19] |
Matthews BJ, McBride CS, DeGennaro M, et al. The neurotranscriptome of the Aedes aegypti mosquito[J]. BMC Genom, 2016,17:32.
doi: 10.1186/s12864-015-2239-0 |
[20] |
Yan H, Jafari S, Pask G, et al. Evolution, developmental expression and function of odorant receptors in insects[J]. J Exp Biol, 2020, 223(pt suppl 1): jeb208215.
doi: 10.1242/jeb.208215 pmid: 32034042 |
[21] |
Gomez-Diaz C, Martin F, Garcia-Fernandez JM, et al. The two main olfactory receptor families in drosophila, ORs and IRs: a comparative approach[J]. Front Cell Neurosci, 2018,12:253.
doi: 10.3389/fncel.2018.00253 pmid: 30214396 |
[22] |
Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes[J]. Annu Rev Entomol, 2013,58:373-391.
doi: 10.1146/annurev-ento-120811-153635 |
[23] |
Carey AF, Wang GR, Su CY, et al. Odorant reception in the malaria mosquito Anopheles gambiae[J]. Nature, 2010,464(7285):66-71.
doi: 10.1038/nature08834 pmid: 20130575 |
[24] |
Carraher C, Dalziel J, Jordan MD, et al. Towards an understanding of the structural basis for insect olfaction by odorant receptors[J]. Insect Biochem Mol Biol, 2015,66:31-41.
doi: 10.1016/j.ibmb.2015.09.010 pmid: 26416146 |
[25] |
Wang GR, Carey AF, Carlson JR, et al. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2010,107(9):4418-4423.
doi: 10.1073/pnas.0913392107 pmid: 20160092 |
[26] |
Chen XG, Jiang X, Gu J, et al. Genome sequence of the Asian tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution[J]. Proc Natl Acad Sci USA, 2016,113(4):E489.
doi: 10.1073/pnas.1524968113 pmid: 26787860 |
[27] |
Matthews BJ, Dudchenko O, Kingan SB, et al. Improved reference genome of Aedes aegypti informs arbovirus vector control[J]. Nature, 2018,563(7732):501-507.
doi: 10.1038/s41586-018-0692-z pmid: 30429615 |
[28] |
Liu H, Liu T, Xie L, et al. Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus[J]. Parasit Vectors, 2016,9(1):363.
doi: 10.1186/s13071-016-1644-9 pmid: 27350348 |
[29] |
Xu PX, Choo YM, de la Rosa A, et al. Mosquito odorant receptor for DEET and methyl jasmonate[J]. Proc Natl Acad Sci USA, 2014,111(46):16592-16597.
doi: 10.1073/pnas.1417244111 pmid: 25349401 |
[30] |
Jones PL, Pask GM, Rinker DC, et al. Functional agonism of insect odorant receptor ion channels[J]. Proc Natl Acad Sci USA, 2011,108(21):8821-8825.
doi: 10.1073/pnas.1102425108 pmid: 21555561 |
[31] |
DeGennaro M, McBride CS, Seeholzer L, et al. Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET[J]. Nature, 2013,498(7455):487-491.
doi: 10.1038/nature12206 pmid: 23719379 |
[32] |
Raji JI, Melo N, Castillo JS, et al. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway[J]. Curr Biol, 2019, 29(8): 1253-1262.e7.
doi: 10.1016/j.cub.2019.02.045 pmid: 30930038 |
[33] |
Hallem EA, Nicole Fox A, Zwiebel LJ, et al. Olfaction: mosquito receptor for human-sweat odorant[J]. Nature, 2004,427(6971):212-213.
doi: 10.1038/427212a pmid: 14724626 |
[34] |
Pitts RJ, Derryberry SL, Zhang Z, et al. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids[J]. Sci Rep, 2017,7:40297.
doi: 10.1038/srep40297 pmid: 28067294 |
[35] |
Thireou T, Kythreoti G, Tsitsanou KE, et al. Identification of novel bioinspired synthetic mosquito repellents by combined ligand-based screening and OBP-structure-based molecular docking[J]. Insect Biochem Mol Biol, 2018,98:48-61.
doi: 10.1016/j.ibmb.2018.05.001 pmid: 29751047 |
[36] |
Kröber T, Koussis K, Bourquin M, et al. Odorant-binding protein-based identification of natural spatial repellents for the African malaria mosquito Anopheles gambiae[J]. Insect Biochem Mol Biol, 2018,96:36-50.
doi: 10.1016/j.ibmb.2018.03.008 pmid: 29656020 |
[37] |
Deng Y, Yan H, Gu J, et al. Molecular and functional characterization of odorant-binding protein genes in an invasive vector mosquito, Aedes albopictus[J]. PLoS One, 2013,8(7):e68836.
doi: 10.1371/journal.pone.0068836 pmid: 23935894 |
[38] |
McBride CS, Baier F, Omondi AB, et al. Evolution of mosquito preference for humans linked to an odorant receptor[J]. Nature, 2014,515(7526):222-227.
doi: 10.1038/nature13964 |
[39] |
Wu Q, Li CX, Liu QM, et al. RNA interference of odorant receptor CquiOR114/117 affects blood-feeding behavior in Culex quinquefasciatus[J]. Acta Trop, 2020,204:105343.
doi: 10.1016/j.actatropica.2020.105343 pmid: 31954135 |
[40] |
Pelletier J, Guidolin A, Syed Z, et al. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants[J]. J Chem Ecol, 2010,36(3):245-248.
doi: 10.1007/s10886-010-9762-x |
[41] |
Yin J, Choo YM, Duan H, et al. Selectivity of odorant-binding proteins from the southern house mosquito tested against physiologically relevant ligands[J]. Front Physiol, 2015,6:56.
doi: 10.3389/fphys.2015.00056 pmid: 25774136 |
[42] | Wang Y, Li TT, Gong MQ. Advances in research on olfactory receptors of mosquitoes[J]. Chin J Parasitol Parasit Dis, 2020,38(5):647-652. (in Chinese) |
( 王洋, 李婷婷, 公茂庆. 蚊虫嗅觉受体研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(5):647-652.) | |
[43] |
Schorkopf DL, Spanoudis CG, Mboera LE, et al. Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control[J]. PLoS Negl Trop Dis, 2016,10(10):e0005043.
doi: 10.1371/journal.pntd.0005043 pmid: 27768698 |
[44] |
Wondwosen B, Birgersson G, Tekie H, et al. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis[J]. Malar J, 2018,17(1):90.
doi: 10.1186/s12936-018-2245-1 pmid: 29466989 |
[45] |
Xie L, Yang W, Liu H, et al. Enhancing attraction of the vector mosquito Aedes albopictus by using a novel synthetic odorant blend[J]. Parasit Vectors, 2019,12(1):382.
doi: 10.1186/s13071-019-3646-x pmid: 31362759 |
[46] |
Batista EPA, Ngowo H, Opiyo M, et al. Field evaluation of the BG-Malaria trap for monitoring malaria vectors in rural Tanzanian villages[J]. PLoS One, 2018,13(10):e0205358.
doi: 10.1371/journal.pone.0205358 pmid: 30296287 |
[47] |
MacKay AJ, Amador M, Barrera R. An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti[J]. Parasit Vectors, 2013,6:225.
doi: 10.1186/1756-3305-6-225 pmid: 23919568 |
[48] |
Stanczyk NM, Brookfield JF, Ignell R, et al. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function[J]. Proc Natl Acad Sci USA, 2010,107(19):8575-8580.
doi: 10.1073/pnas.1001313107 pmid: 20439757 |
[49] |
Verhulst EC, van de Zande L, Beukeboom LW. Insect sex determination: it all evolves around transformer[J]. Curr Opin Genet Dev, 2010,20(4):376-383.
doi: 10.1016/j.gde.2010.05.001 |
[50] |
Day J. Mosquito oviposition behavior and vector control[J]. Insects, 2016,7(4):65.
doi: 10.3390/insects7040065 |
[51] |
Hall AB, Qi YM, Timoshevskiy V, et al. Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females[J]. BMC Genom, 2013,14:273.
doi: 10.1186/1471-2164-14-273 |
[52] |
Krzywinska E, Dennison NJ, Lycett GJ, et al. A maleness gene in the malaria mosquito Anopheles gambiae[J]. Science, 2016,353(6294):67-69.
doi: 10.1126/science.aaf5605 pmid: 27365445 |
[53] |
Criscione F, Qi Y, Tu Z. GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi[J]. Elife, 2016,5.
doi: 10.7554/eLife.19706 pmid: 28009253 |
[54] |
Qi Y, Wu Y, Saunders R, et al. Guy1, a Y-linked embryonic signal, regulates dosage compensation in Anopheles stephensi by increasing X gene expression[J]. Elife, 2019,8.
doi: 10.7554/eLife.51163 pmid: 31868589 |
[55] |
Hall AB, Basu S, Jiang X, et al. Sex determination. A male-determining factor in the mosquito Aedes aegypti[J]. Science, 2015,348(6240):1268-1270.
doi: 10.1126/science.aaa2850 pmid: 25999371 |
[56] |
Aryan A, Anderson MAE, Biedler JK, et al. Nix alone is sufficient to convert female Aedes aegypti into fertile males and myo-sex is needed for male flight[J]. Proc Natl Acad Sci USA, 2020,117(30):17702-17709.
doi: 10.1073/pnas.2001132117 pmid: 32661163 |
[57] |
Gomulski LM, Mariconti M, Di Cosimo A, et al. The Nix locus on the male-specific homologue of chromosome 1 in Aedes albopictus is a strong candidate for a male-determining factor[J]. Parasit Vectors, 2018,11(suppl 2):647.
doi: 10.1186/s13071-018-3215-8 pmid: 30583734 |
[58] |
Liu PW, Jin BB, Li XC, et al. Nix is a male-determining factor in the Asian tiger mosquito Aedes albopictus[J]. Insect Biochem Mol Biol, 2020,118:103311.
doi: 10.1016/j.ibmb.2019.103311 pmid: 31901476 |
[59] |
Jost E, Laven H. Meiosis in translocation heterozygotes in the mosquito Culex pipiens[J]. Chromosoma, 1971,35(2):184-205.
doi: 10.1007/BF00285736 pmid: 5131761 |
[60] |
Baker RH, Sakai RK. Triploids and male determination in the mosquito, Anopheles culicifacies[J]. J Hered, 1979,70(5):345-346.
doi: 10.1093/oxfordjournals.jhered.a109271 pmid: 43343 |
[61] |
Ferdig MT, Taft AS, Severson DW, et al. Development of a comparative genetic linkage map for Armigeres subalbatus using Aedes aegypti RFLP markers[J]. Genome Res, 1998,8(1):41-47.
doi: 10.1101/gr.8.1.41 pmid: 9445486 |
[62] |
Newton ME, Southern DI, Wood RJ. X and Y chromosomes of Aedes aegypti (L.) distinguished by Giemsa C-banding[J]. Chromosoma, 1974,49(1):41-49.
doi: 10.1007/BF00284986 pmid: 4141301 |
[63] |
Toups MA, Hahn MW. Retrogenes reveal the direction of sex-chromosome evolution in mosquitoes[J]. Genetics, 2010,186(2):763-766.
doi: 10.1534/genetics.110.118794 pmid: 20660646 |
[64] |
Motara MA, Rai KS. Chromosomal differentiation in two species of Aedes and their hybrids revealed by Giemsa C-banding[J]. Chromosoma, 1977,64(2):125-132.
doi: 10.1007/BF00327052 |
[65] |
Mori A, Tomita T, Hidoh O, et al. Comparative linkage map development and identification of an autosomal locus for insensitive acetylcholinesterase-mediated insecticide resistance in Culex tritaeniorhynchus[J]. Insect Mol Biol, 2001,10(3):197-203.
doi: 10.1046/j.1365-2583.2001.00255.x pmid: 11437911 |
[66] |
Malcolm CA, Bourguet D, Ascolillo A, et al. A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens[J]. Insect Mol Biol, 1998,7(2):107-120.
doi: 10.1046/j.1365-2583.1998.72055.x pmid: 9535157 |
[67] |
Reidenbach KR, Cook S, Bertone MA, et al. Phylogenetic analysis and temporal diversification of mosquitoes (Diptera : Culicidae) based on nuclear genes and morphology[J]. BMC Evol Biol, 2009,9:298.
doi: 10.1186/1471-2148-9-298 pmid: 20028549 |
[68] |
Krzywinski J, Grushko OG, Besansky NJ. Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution[J]. Mol Phylogenetics Evol, 2006,39(2):417-423.
doi: 10.1016/j.ympev.2006.01.006 |
[69] |
Wang J, Na JK, Yu Q, et al. Sequencing Papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution[J]. Proc Natl Acad Sci USA, 2012,109(34):13710-13715.
doi: 10.1073/pnas.1207833109 pmid: 22869747 |
[70] |
Hall AB, Papathanos PA, Sharma A, et al. Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes[J]. Proc Natl Acad Sci USA, 2016,113(15):E2114-E2123.
doi: 10.1073/pnas.1525164113 pmid: 27035980 |
[71] |
Criscione F, Qi Y, Saunders R, et al. A unique Y gene in the Asian malaria mosquito Anopheles stephensi encodes a small lysine-rich protein and is transcribed at the onset of embryonic development[J]. Insect Mol Biol, 2013,22(4):433-441.
doi: 10.1111/imb.12034 |
[72] |
Salz H, Erickson JW. Sex determination in Drosophila: the view from the top[J]. Fly, 2010,4(1):60-70.
doi: 10.4161/fly.4.1.11277 pmid: 20160499 |
[73] | Biedler JK, Tu Z. Sex determination in mosquitoes[J]. Adv Insect Physiol, 2016,51:37-66. |
[74] |
Salvemini M, D’Amato R, Petrella V, et al. The orthologue of the fruitfly sex behaviour gene fruitless in the mosquito Aedes aegypti: evolution of genomic organisation and alternative splicing[J]. PLoS One, 2013,8(2):e48554.
doi: 10.1371/journal.pone.0048554 pmid: 23418412 |
[75] |
Scali C, Catteruccia F, Li Q, et al. Identification of sex-specific transcripts of the Anopheles gambiae doublesex gene[J]. J Exp Biol, 2005,208(pt 19):3701-3709.
doi: 10.1242/jeb.01819 pmid: 16169947 |
[76] |
Zheng X, Zhang D, Li Y, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes[J]. Nature, 2019,572(7767):56-61.
doi: 10.1038/s41586-019-1407-9 pmid: 31316207 |
[77] |
Hammond A, Galizi R, Kyrou K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae[J]. Nat Biotechnol, 2016,34(1):78-83.
doi: 10.1038/nbt.3439 pmid: 26641531 |
[78] |
Eckhoff PA, Wenger EA, Godfray HC, et al. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics[J]. Proc Natl Acad Sci USA, 2017,114(2):E255-E264.
doi: 10.1073/pnas.1611064114 pmid: 28028208 |
[79] |
Crawford JE, Clarke DW, Criswell V, et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations[J]. Nat Biotechnol, 2020,38(4):482-492.
doi: 10.1038/s41587-020-0471-x pmid: 32265562 |
[80] |
Mains JW, Brelsfoard CL, Rose RI, et al. Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes[J]. Sci Rep, 2016,6:33846.
doi: 10.1038/srep33846 pmid: 27659038 |
[81] |
Kyrou K, Hammond AM, Galizi R, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes[J]. Nat Biotechnol, 2018,36(11):1062-1066.
doi: 10.1038/nbt.4245 pmid: 30247490 |
[1] | ZHANG Hong, CHENG Gong. Research progress on the effect of human volatiles on mosquito behavior [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 10-14. |
[2] | JIANG Li, ZHANG Yao-guang, LIU Hong-xia, WANG Zhen-yu, ZHU Min, WU Huan-yu. Establishment of multiplex PCR for malaria-transmitting vector surveillance [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 159-167. |
[3] | KUANG Ce-yan, ZHOU Jin-lin. Research progress on the chemical sensing system and repellents of ticks [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 104-108. |
[4] | GUO Hong-xia, ZHAO Teng, WU Jia-hong, LI Chun-xiao. Research progress on the effects of human skin microbiota on mosquito olfactory behavior [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 94-98. |
[5] | WAN Lun, ZHANG Hua-xun, LI Kai-jie, ZHANG Cong, CAO Mu-min, WU Dong-ni, ZHANG Juan, LIN Wen, LIU Si, ZHU Hong, XIA Jing. Surveillance of malaria-transmitting vectors in Hubei Province from 2018 to 2020 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(5): 592-597. |
[6] | CHEN Sui-lin, LIU Tai-ping, XU Wen-yue. Development of malaria vaccines and the challenges [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(3): 283-295. |
[7] | GU Zhen-yu, ZHAO Teng, LI Chun-xiao. Research progress on odor binding proteins and odor receptors of mosquitoes [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 753-757. |
[8] | WANG Yang, LI Ting-ting, GONG Mao-qing. Advances in research on olfactory receptors of mosquitoes [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(5): 647-652. |
[9] | Zhen CAI, Xi YU, Gong CHENG. Progress towards mosquito microbiome on regulating the transmission of mosquito-borne diseases [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(5): 603-608. |
[10] | Yu-yan GUO, Lei LUO, Zhang-yao SONG, Xue-li ZHENG. Mitochondrial DNA sequence analysis of cytochrome oxidase subunit Ⅰ gene from 28 mosquito species in China [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(3): 280-287. |
[11] | Xiao-ming WANG, Kun WU, Xiao-guang CHEN, Gui-yun YAN. Research advances on diversity and function of mosquito-bacteria symbiosis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(3): 305-312. |
[12] | GUO Xiu-xia,WANG Huai-wei *. Research Progress on the Molecular Mechanisms of Mosquito Innate Immunity [J]. , 2015, 33(1): 11-52-57. |
[13] | JIANG Jin-yong1, 2,MA Ya-jun1*,ZHOU Hong-ning2. Research Progress on the Sugar-feeding Behavior of Mosquitoes and its Application in Mosquito Control [J]. , 2012, 30(1): 15-17-19. |
[14] | YANG Pin. Progress on Transgenic Mosquitoes [J]. , 2011, 29(2): 15-151-153. |
[15] | LIMei;TANGLin-hua*. Research progress on midgut bacteria of anopheline mosquitoes and their application in malaria control [J]. , 2010, 28(5): 11-376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||