CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2020, Vol. 38 ›› Issue (5): 642-646.doi: 10.12140/j.issn.1000-7423.2020.05.018
• REVIEWS • Previous Articles Next Articles
LIU Na-na1(), CUI Yu-bao2, YE Lin-hua1, HUANG Lu-sheng1,*(
)
Received:
2020-01-09
Online:
2020-10-30
Published:
2020-11-12
Contact:
HUANG Lu-sheng
E-mail:876636493@qq.com;huanglusheng@sina.cn
Supported by:
CLC Number:
LIU Na-na, CUI Yu-bao, YE Lin-hua, HUANG Lu-sheng. Applications of high-throughput omics technology in research on dust mite[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(5): 642-646.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2020.05.018
种名 | 拉丁文 | 基因组大小/Mb | 支架N50 | 支架 | 预测蛋白数 | 基因组NCBI登录号 | 参考文献 |
---|---|---|---|---|---|---|---|
粉尘螨 | Dermatophagoides farina | 53.5 | 187 kb | 515 | 16 376 | GCA_000767015.1 | [ |
屋尘螨 | D. pteronyssinus | 52.5 | 376 kb | 834 | 19 368 | - | [ |
梅氏嗜霉螨 | Euroglyphus maynei | 59 | 480 nt | - | 15 000 | - | [ |
屋尘螨 | D. pteronyssinus | 70.76 | 450 kb | 332 | - | GCA_001901225.2 | [ |
屋尘螨 | D. pteronyssinus | 66.8 | 80 kb | 634 | - | GCA_003076615.1 | [ |
[1] |
Banerjee S, Resch Y, Chen KW, et al. Der p 11 is a major allergen for house dust mite-allergic patients suffering from atopic dermatitis[J]. J Invest Dermatol, 2015,135(1):102-109.
doi: 10.1038/jid.2014.271 pmid: 24999597 |
[2] | He XM, Shao C, Wei QY. Progress in sensitized protein components and subcutaneous specific immunotherapy for dust mites[J]. Int J Pediatrics, 2019(3):198-202. (in Chinese) |
( 何雪梅, 邵婵, 魏庆宇. 尘螨致敏蛋白组份及其皮下特异性免疫治疗的研究进展[J]. 国际儿科学杂志, 2019,46(3):198-202.) | |
[3] |
Li J, Sun B, Huang Y, et al. A multicentre study assessing the prevalence of sensitizations in patients with asthma and/or rhinitis in China[J]. Allergy, 2009,64(7):1083-1092.
doi: 10.1111/j.1398-9995.2009.01967.x pmid: 19210346 |
[4] | Hui Y, Li L, Qian J, et al. Efficacy analysis of three-year subcutaneous SQ-standardized specific immunotherapy in house dust mite-allergic children with asthma[J]. Exp Ther Med, 2014,7(3):630-634. |
[5] |
Yagami T, Haishima Y, Tsuchiya T, et al. Proteomic analysis of putative latex allergens[J]. Int Arch Allergy Immunol, 2004,135(1):3-11.
doi: 10.1159/000080036 pmid: 15286439 |
[6] |
Chan TF, Ji KM, Yim AK, et al. The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens[J]. J Allergy Clin Immunol, 2015,135(2):539-548.
doi: 10.1016/j.jaci.2014.09.031 pmid: 25445830 |
[7] |
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes[J]. Bioinformatics, 2007,23(9):1061-1067.
doi: 10.1093/bioinformatics/btm071 pmid: 17332020 |
[8] |
Randall TA, Mullikin JC, Mueller GA. The draft genome assembly of Dermatophagoides pteronyssinus supports identification of novel allergen isoforms in Dermatophagoides species[J]. Int Arch Allergy Immunol, 2018,175(3):136-146.
doi: 10.1159/000481989 pmid: 29320781 |
[9] |
Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data[J]. Genomics, 2010,95(6):315-327.
doi: 10.1016/j.ygeno.2010.03.001 pmid: 20211242 |
[10] |
Rider SD Jr, Morgan MS, Arlian LG. Allergen homologs in the Euroglyphus maynei draft genome[J]. PLoS One, 2017,12(8):e0183535.
doi: 10.1371/journal.pone.0183535 pmid: 28829832 |
[11] |
Waldron R, McGowan J, Gordon N, et al. Draft genome sequence of Dermatophagoides pteronyssinus, the European house dust mite[J]. Genome Announc, 2017,5(32):e00789-e00717.
doi: 10.1128/genomeA.00789-17 pmid: 28798186 |
[12] |
Rider SD Jr, Morgan MS, Arlian LG. Draft genome of the Scabies mite[J]. Parasit Vectors, 2015,8:585.
doi: 10.1186/s13071-015-1198-2 pmid: 26555130 |
[13] |
Liu XY, Yang KY, Wang MQ, et al. High-quality assembly of Dermatophagoides pteronyssinus genome and transcriptome reveals a wide range of novel allergens[J]. J Allergy Clin Immunol, 2018,141(6):2268-2271.
doi: 10.1016/j.jaci.2017.11.038 pmid: 29305317 |
[14] |
Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[J]. Genome Res, 2017,27(5):722-736.
doi: 10.1101/gr.215087.116 pmid: 28298431 |
[15] |
Cui Y, Yu L, Teng F, et al. Transcriptomic/proteomic identification of allergens in the mite Tyrophagus putrescentiae[J]. Allergy, 2016,71(11):1635-1639.
doi: 10.1111/all.12999 pmid: 27496383 |
[16] |
Bordas-Le Floch V, Le Mignon M, Bussières L, et al. A combined transcriptome and proteome analysis extends the allergome of house dust mite Dermatophagoides species[J]. PLoS One, 2017,12(10):e0185830.
doi: 10.1371/journal.pone.0185830 pmid: 28982170 |
[17] |
Zhou Y, Li L, Qian J, et al. Identification of three aquaporin subgroups from Blomia tropicalis by transcriptomics[J]. Int J Mol Med, 2018,42(6):3551-3561.
doi: 10.3892/ijmm.2018.3877 pmid: 30221673 |
[18] |
Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis[J]. Nat Protoc, 2013,8(8):1494-1512.
doi: 10.1038/nprot.2013.084 pmid: 23845962 |
[19] | Zhao QP, Jiang MS. Proteomics and its application in parasitology[J]. Chin J Parasitol Parasit Dis, 2006,24(2):136-139. (in Chinese) |
( 赵琴平, 蒋明森. 蛋白质组学及其在寄生虫学研究中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2006,24(2):136-139.) | |
[20] | He DG. Proteomics and its application in parasitology[J]. Chin Trop Med, 2003,3(4):507-512. (in Chinese) |
( 何东苟. 蛋白质组学研究及其在寄生虫学上的应用[J]. 中国热带医学, 2003,3(4):507-512.) | |
[21] |
An S, Chen LL, Long CB, et al. Dermatophagoides farinae allergens diversity identification by proteomics[J]. Mol Cell Proteomics, 2013,12(7):1818-1828.
doi: 10.1074/mcp.M112.027136 pmid: 23481662 |
[22] |
Choopong J, Reamtong O, Sookrung N, et al. Proteome, allergenome, and novel allergens of house dust mite, Dermatophagoides farinae[J]. J Proteome Res, 2016,15(2):422-430.
doi: 10.1021/acs.jproteome.5b00663 pmid: 26754146 |
[23] |
Kim JY, Yi MH, Hwang Y, et al. 16S rRNA profiling of the Dermatophagoides farinae core microbiome: Enterococcus and Bartonella[J]. Clin Exp Allergy, 2018,48(5):607-610.
doi: 10.1111/cea.13104 pmid: 29381238 |
[24] |
Hubert J, Kopecky J, Perotti MA, et al. Detection and identification of species-specific bacteria associated with synanthropic mites[J]. Microb Ecol, 2012,63(4):919-928.
doi: 10.1007/s00248-011-9969-6 pmid: 22057398 |
[25] |
Kopecky J, Perotti MA, Nesvorna M, et al. Cardinium endosymbionts are widespread in synanthropic mite species (Acari: Astigmata)[J]. J Invertebr Pathol, 2013,112(1):20-23.
doi: 10.1016/j.jip.2012.11.001 pmid: 23147105 |
[26] |
Santos-Garcia D, Rollat-Farnier PA, Beitia F, et al. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisiatabaci[J]. Genome Biol Evol, 2014,6(4):1013-1030.
doi: 10.1093/gbe/evu077 pmid: 24723729 |
[27] |
Penz T, Schmitz-Esser S, Kelly SE, et al. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in cardinium hertigii[J]. PLoS Genet, 2012,8(10):e1003012.
doi: 10.1371/journal.pgen.1003012 pmid: 23133394 |
[28] |
Hubert J, Nesvorna M, Kopecky J, et al. Population and culture age influence the microbiome profiles of house dust mites[J]. Microb Ecol, 2019,77(4):1048-1066.
pmid: 30465068 |
[29] |
Valerio CR, Murray P, Arlian LG, et al. Bacterial 16S ribosomal DNA in house dust mite cultures[J]. J Allergy Clin Immunol, 2005,116(6):1296-1300.
doi: 10.1016/j.jaci.2005.09.046 pmid: 16337462 |
[30] |
Erban T, Ledvinka O, Nesvorna M, et al. Experimental manipulation shows a greater influence of population than dietary perturbation on the microbiome of Tyrophagus putrescentiae[J]. Appl Environ Microbiol, 2017,83(9):e00128-e00117.
pmid: 28235879 |
[1] | ZHANG Chi, CHEN Jiating, XIN Zixuan, YANG Lili, YANG Zihan, PENG Hongjuan. Transcriptome analysis of mice brain chronically infected with Toxoplasma gondii and validation of the kynurenine pathway associated with depression [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 270-278. |
[2] | HAO Huinan, CHENG Yongkang, ZHANG Ru, HAN Lulu, SONG Yanyan, LONG Shaorong, LIU Ruodan, ZHANG Xi, WANG Zhongquan, CUI Jing. Immunoproteomic analysis on the soluble antigens of Trichinella spiralis newborn larvae [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 176-182. |
[3] | CAO Deping, WU Defang, PANG Mingquan, PENG Xiaohong, LI Dayu, FAN Haining. Difference analysis of the gut microbiome in patients with echinococcosis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 103-107. |
[4] | LIU Ya-fang, CHEN Bin, LU Xin-yan, LI Guang-hua, DU Chun-hong, JIANG Dan-dan, YANG Xing. Complete mitochondrial genome sequence of Rhipicephalus microplus [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 677-681. |
[5] | HONG Yang, LIN Jiao-jiao. Research progress on proteomics in Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 725-730. |
[6] | QIN Xin, ZHU Feng, ZHANG Kun, ZHANG Jian. Analysis of immune genes of anopheline mosquitoes induced by Plasmodium yoelii hemolymph sporozoites [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 449-454. |
[7] | WANG Long-jiang, LI Jin, YIN Kun, XU Chao, LIU Gong-zhen, HUANG Bing-cheng, WEI Qing-kuan, SUN Hui. Comparative analysis of transcriptomes in Toxoplasma gondii before and after invasion in human foreskin fibroblasts [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 480-486. |
[8] | XU Feng-yan, YANG Yong, GAO Xin, LIU Xiao-lei, WANG Yang, LIU Ming-yuan, ZHANG Yuan-yuan, BAI Xue. Advances in research on parasite proteomics of extracellular vesicles [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 526-532. |
[9] | LIU Hong, LIU Yao-bao, CAO Jun. Research advance and application of whole-genome sequencing of Plasmodium [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(2): 265-270. |
[10] | SHI Chun-li, YANG Hui, PAN Wen, ZHANG Xin, ZHU Xiao-ting, ZHAO Jia-qing. Proteomic analysis of human proteins in extracellular vesicles secreted by protoscoleces of Echinococcus granulosus [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 695-701. |
[11] | ZHANG Yu-lu, WANG Yang, BAI Xue, TANG Bin, HU Xiao-xiang, ZHANG Chun-ling, LIU Ming-yuan, LIU Xiao-lei. iTRAQ-based proteomics of excretory-secretory products of Trichinella spiralis and Trichinella pseudospiralis at the muscle larva stage [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(1): 47-53. |
[12] | Yi-ni TIAN, Run YE, Wei-qing PAN, Dong-mei ZHANG. Approaches to screening and identifying genes associated with drug-resistance of Plasmodium falciparum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(5): 495-498. |
[13] | Hao ZHOU, Qi-yan WANG, Hong-ling ZHANG, Zheng REN, Jia-lin DAI, Yu-bo LIU, Jie WANG, Jiang HUANG. Differential analysis of transcriptomes in Boettcherisca peregrine pupae at three developmental stages [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(3): 274-279. |
[14] | An-mei LI, Ma-li WU, Yu-ting HUANG, Zhi-lai GUO. Proteomics analysis of Paragonimus skrjabini [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(1): 43-47. |
[15] | QIU Jingfan, GE Ke, WANG Yong*. Research Advances on Toxoplasma gondii Proteomics [J]. , 2015, 33(3): 11-214-218, 221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||