[1] | Molan A, Nosaka K, Hunter M, et al. Global status of Toxoplasma gondii infection: systematic review and prevalence snapshots[J]. Trop Biomed, 2019, 36(4): 898-925. | [2] | Pan M, Lyu CC, Zhao JL, et al. Sixty years (1957—2017) of research on toxoplasmosis in china: an overview[J]. Front Microbiol, 2017, 8: 1825. | [3] | Robert-Gangneux F, Dardé ML. Epidemiology of and diagnostic strategies for toxoplasmosis[J]. Clin Microbiol Rev, 2012, 25(2): 264-296. | [4] | Elsheikha HM, Marra CM, Zhu XQ. Epidemiology, pathophysiology, diagnosis, and management of cerebral toxoplasmosis[J]. Clin Microbiol Rev, 2020, 34(1): e00115-e00119. | [5] | Yin K, Xu C, Zhao GH, et al. Epigenetic manipulation of psychiatric behavioral disorders induced by Toxoplasma gondii[J]. Front Cell Infect Microbiol, 2022, 12: 803502. | [6] | Hsu PC, Groer M, Beckie T. New findings: depression, suicide, and Toxoplasma gondii infection[J]. J Am Assoc Nurse Pract, 2014, 26(11): 629-637. | [7] | Boillat M, Hammoudi PM, Dogga SK, et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii[J]. Cell Rep, 2020, 30(2): 320-334.e6. | [8] | Hari Dass SA, Vyas A. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala[J]. Mol Ecol, 2014, 23(24): 6114-6122. | [9] | Syn G, Anderson D, Blackwell JM, et al. Epigenetic dysregulation of host gene expression in Toxoplasma infection with specific reference to dopamine and amyloid pathways[J]. Infect Genet Evol, 2018, 65: 159-162. | [10] | Holmes MJ, Padgett LR, Bastos MS, et al. m6A RNA methylation facilitates pre-mRNA 3'-end formation and is essential for viability of Toxoplasma gondii[J]. PLoS Pathog, 2021, 17(7): e1009335. | [11] | Farhat DC, Bowler MW, Communie G, et al. A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma[J]. eLife, 2021, 10: e68312. | [12] | Baumgarten S, Bryant JM, Sinha A, et al. Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development[J]. Nat Microbiol, 2019, 4(12): 2246-2259. | [13] | Zhang N, Ding CH, Zuo YX, et al. N6-methyladenosine and neurological diseases[J]. Mol Neurobiol, 2022, 59(3): 1925-1937. | [14] | Imanishi M. Mechanisms and strategies for determining m6A RNA modification sites by natural and engineered m6A effector proteins[J]. Chem Asian J, 2022, 17(16): e202200367. | [15] | Xiao S, Cao S, Huang QT, et al. The RNA N6-methyladenosine modification landscape of human fetal tissues[J]. Nat Cell Biol, 2019, 21(5): 651-661. | [16] | Oerum S, Meynier V, Catala M, et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures[J]. Nucleic Acids Res, 2021, 49(13): 7239-7255. | [17] | Zhao GH, Zhang LX, Dai LS, et al. Development of Toxoplasma gondii Chinese Ⅰ genotype wh6 strain in cat intestinal epithelial cells[J]. Korean J Parasitol, 2022, 60(4): 241-246. | [18] | Zhao GH, Dai LS, Zhu JJ, et al. Development research of Toxoplasma gondii Chinese Ⅲ genotype strain isolated from humans in the definitive host[J]. J Pathog Biol, 2022, 17(2): 174-179. (in Chinese) | | (赵桂华, 代莉莎, 朱进进, 等. 人源中国Ⅲ型刚地弓形虫分离株在终末宿主内的发育研究[J]. 中国病原生物学杂志, 2022, 17(2): 174-179.) | [19] | Lorenz DA, Sathe S, Einstein JM, et al. Direct RNA sequencing enables m6A detection in endogenous transcript isoforms at base-specific resolution[J]. RNA, 2020, 26(1): 19-28. | [20] | Liu HB, Liu XJ, Zhang SM, et al. Systematic identification and annotation of human methylation marks based on bisulfite sequencing methylomes reveals distinct roles of cell type-specific hypomethylation in the regulation of cell identity genes[J]. Nucleic Acids Res, 2016, 44(1): 75-94. | [21] | Yu GC, Wang LG, Han YY, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. | [22] | Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci USA, 2005, 102(43): 15545-15550. | [23] | Vignon M, Bastide A, Attina A, et al. Multiplexed LC-MS/MS quantification of salivary RNA modifications in periodontitis[J]. J Periodontal Res, 2023, 58(5): 959-967. | [24] | Zhang Z, Wang Q, Zhang MM, et al. Comprehensive analysis of the transcriptome-wide m6A methylome in colorectal cancer by MeRIP sequencing[J]. Epigenetics, 2021, 16(4): 425-435. | [25] | Krusnauskas R, Stakaitis R, Steponaitis G, et al. Identification and comparison of m6A modifications in glioblastoma non-coding RNAs with MeRIP-seq and Nanopore dRNA-seq[J]. Epigenetics, 2023, 18(1): 2163365. | [26] | Sendinc E, Shi Y. RNA m6A methylation across the transcriptome[J]. Mol Cell, 2023, 83(3): 428-441. | [27] | He HY, Hu L. Cysteine-rich intestinal protein 1 enhances the progression of hepatocellular carcinoma via Ras signaling[J]. Kaohsiung J Med Sci, 2022, 38(1): 49-58. | [28] | Imp BM, Rubin LH, Tien PC, et al. Monocyte activation is associated with worse cognitive performance in HIV-infected women with virologic suppression[J]. J Infect Dis, 2017, 215(1): 114-121. | [29] | Bichsel SJ, Tamaskovic R, Stegert MR, et al. Mechanism of activation of NDR (nuclear Dbf2-related) protein kinase by the hMOB1 protein[J]. J Biol Chem, 2004, 279(34): 35228-35235. | [30] | Hergovich A. MOB control: reviewing a conserved family of kinase regulators[J]. Cell Signal, 2011, 23(9): 1433-1440. | [31] | Hong AW, Meng ZP, Guan KL. The Hippo pathway in intestinal regeneration and disease[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(6): 324-337. | [32] | Ewing RM, Chu P, Elisma F, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry[J]. Mol Syst Biol, 2007, 3: 89. | [33] | Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28[J]. Nature, 1999, 397(6716): 263-266. | [34] | Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS)[J]. Curr Opin Immunol, 2010, 22(3): 326-332. | [35] | Carreno BM, Collins M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses[J]. Annu Rev Immunol, 2002, 20: 29-53. | [36] | Villegas EN, Lieberman LA, Mason N, et al. A role for inducible costimulator protein in the CD28-independent mechanism of resistance to Toxoplasma gondii[J]. J Immunol, 2002, 169(2): 937-943. | [37] | Wilson EH, Zaph C, Mohrs M, et al. B7RP-1-ICOS interactions are required for optimal infection-induced expansion of CD4+ Th1 and Th2 responses[J]. J Immunol, 2006, 177(4): 2365-2372. | [38] | O’Brien CA, Batista SJ, Still KM, et al. IL-10 and ICOS differentially regulate T cell responses in the brain during chronic Toxoplasma gondii infection[J]. J Immunol, 2019, 202(6): 1755-1766. | [39] | Suzuki Y, Lutshumba J, Chen KC, et al. IFN-γ production by brain-resident cells activates cerebral mRNA expression of a wide spectrum of molecules critical for both innate and T cell-mediated protective immunity to control reactivation of chronic infection with Toxoplasma gondii[J]. Front Cell Infect Microbiol, 2023, 13: 1110508. |
|