[1] | Smith NC, Goulart C, Hayward JA, et al. Control of human toxoplasmosis[J]. Int J Parasitol, 2021, 51(2/3): 95-121. | [2] | Su YJ, Ma ZD, Qiao X, et al. Geospatial epidemiology of Toxoplasma gondii infection in livestock, pets, and humans in China, 1984—2020[J]. Parasitol Res, 2022, 121(2): 743-750. | [3] | Zhu XP, Su C. Human parasitology[M]. Beijing: People’s Medical Publishing House, 2018: 69-73. (in Chinese) | | (诸欣平, 苏川. 人体寄生虫学[M]. 北京: 人民卫生出版社, 2018: 69-73.) | [4] | Lima TS, Lodoen MB. Mechanisms of human innate immune evasion by Toxoplasma gondii[J]. Front Cell Infect Microbiol, 2019, 9: 103. | [5] | Zhao XY, Ewald SE. The molecular biology and immune control of chronic Toxoplasma gondii infection[J]. J Clin Invest, 2020, 130(7): 3370-3380. | [6] | Han SQ, Wu K. Advances in the study of bradyzoite-associated proteins of Toxoplasma gondii[J]. Chin J Zoonoses, 2014, 30(9): 965-970. (in Chinese) | | (韩思琪, 吴焜. 弓形虫缓殖子期相关蛋白的研究进展[J]. 中国人兽共患病学报, 2014, 30(9): 965-970.) | [7] | Zheng WH, Dou NX, Lü ZY. Mechanism of psychiatric disorders caused by Toxoplasma gondii infection[J]. J Trop Med, 2017, 17(1): 119-122. (in Chinese) | | (郑维泓, 窦宁馨, 吕志跃. 弓形虫感染引起精神疾病的机制研究进展[J]. 热带医学杂志, 2017, 17(1): 119-122.) | [8] | Lachenmaier SM, Deli MA, Meissner M, et al. Intracellular transport of Toxoplasma gondii through the blood-brain barrier[J]. J Neuroimmunol, 2011, 232(1/2): 119-130. | [9] | Wohlfert EA, Blader IJ, Wilson EH. Brains and brawn: Toxoplasma infections of the central nervous system and skeletal muscle[J]. Trends Parasitol, 2017, 33(7): 519-531. | [10] | Kim H, Hong SH, Jeong HE, et al. Microfluidic model for in vitro acute Toxoplasma gondii infection and transendothelial migration[J]. Sci Rep, 2022, 12(1): 11449. | [11] | Ortiz-Guerrero G, Gonzalez-Reyes RE, de-la-Torre A, et al. Pathophysiological mechanisms of cognitive impairment and neurodegeneration by Toxoplasma gondii infection[J]. Brain Sci, 2020, 10(6): 369. | [12] | Ma Y, Semba S, Khan RI, et al. Focal adhesion kinase regulates intestinal epithelial barrier function via redistribution of tight junction[J]. Biochim Biophys Acta, 2013, 1832(1): 151-159. | [13] | Cook JH, Ueno N, Lodoen MB. Toxoplasma gondii disrupts β1 integrin signaling and focal adhesion formation during monocyte hypermotility[J]. J Biol Chem, 2018, 293(9): 3374-3385. | [14] | Ross EC, Olivera GC, Barragan A. Dysregulation of focal adhesion kinase upon Toxoplasma gondii infection facilitates parasite translocation across polarised primary brain endothelial cell monolayers[J]. Cell Microbiol, 2019, 21(9): e13048. | [15] | Ross EC, Olivera GC, Barragan A. Early passage of Toxoplasma gondii across the blood-brain barrier[J]. Trends Parasitol, 2022, 38(6): 450-461. | [16] | Konradt C, Ueno N, Christian DA, et al. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system[J]. Nat Microbiol, 2016, 1: 16001. | [17] | Matta SK, Rinkenberger N, Dunay IR, et al. Toxoplasma gondii infection and its implications within the central nervous system[J]. Nat Rev Micro, 2021, 19(7): 467-480. | [18] | Estato V, Stipursky J, Gomes F, et al. The neurotropic parasite Toxoplasma gondii induces sustained neuroinflammation with microvascular dysfunction in infected mice[J]. Am J Pathol, 2018, 188(11): 2674-2687. | [19] | Schneider CA, Figueroa Velez DX, Azevedo R, et al. Imaging the dynamic recruitment of monocytes to the blood-brain barrier and specific brain regions during Toxoplasma gondii infection[J]. Proc Natl Acad Sci USA, 2019, 116(49): 24796-24807. | [20] | Yang J, Yuan WY. Toxoplasma infection on nerve tissue damage and its mechanism through the blood-brain barrier[J]. Acta Neuro, 2019, 9(5): 40-43. (in Chinese) | | (杨靖, 苑文英. 弓形虫感染对神经组织损伤及通过血脑屏障机制[J]. 神经药理学报, 2019, 9(5): 40-43.) | [21] | Hakimi MA, Olias P, Sibley LD. Toxoplasma effectors targeting host signaling and transcription[J]. Clin Microbiol Rev, 2017, 30(3): 615-645. | [22] | Chen LF, Christian DA, Kochanowsky JA, et al. The Toxoplasma gondii virulence factor ROP16 acts in cis and trans, and suppresses T cell responses[J]. J Exp Med, 2020, 217(3): e20181757. | [23] | Mercer HL, Snyder LM, Doherty CM, et al. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity[J]. PLoS Pathog, 2020, 16(5): e1008572. | [24] | ólafsson EB, Barragan A. The unicellular eukaryotic parasite Toxoplasma gondii hijacks the migration machinery of mononuclear phagocytes to promote its dissemination[J]. Biol cell, 2020, 112(9): 239-250. | [25] | Zhang YH, Wang L, Wang XL, et al. Microglial activation and inflammatory cytokine expression in the brain of chronic Toxoplasma gondii-infected mice[J]. Chin J Parasitol Parasit Dis, 2013, 31(3): 176-179, 184. (in Chinese) | | (张义华, 王璐, 汪学龙, 等. 慢性弓形虫感染小鼠小胶质细胞的活化与炎症因子的表达[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(3): 176-179, 184.) | [26] | Schlüter D, Barragan A. Advances and challenges in understanding cerebral toxoplasmosis[J]. Front Immunol, 2019, 10: 242. | [27] | Suzuki Y. The immune system utilizes two distinct effector mechanisms of T cells depending on two different life cycle stages of a single pathogen, Toxoplasma gondii, to control its cerebral infection[J]. Parasitol Int, 2020, 76: 102030. | [28] | Skariah S, McIntyre MK, Mordue DG. Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion[J]. Parasitol Res, 2010, 107(2): 253-260. | [29] | Augusto L, Wek RC, Jr Sullivan WJ. Host sensing and signal transduction during Toxoplasma stage conversion[J]. Mol Microbiol, 2021, 115(5): 839-848. | [30] | Weiss LM, Dubey JP. Toxoplasmosis: a history of clinical observations[J]. Int J Parasitol, 2009, 39(8): 895-901. | [31] | Wang T, Sun XH, Qin W, et al. From inflammatory reactions to neurotransmitter changes: implications for understanding the neurobehavioral changes in mice chronically infected with Toxoplasma gondii[J]. Behav Brain Res, 2019, 359: 737-748. | [32] | Alsaady I, Tedford E, Alsaad M, et al. Downregulation of the central noradrenergic system by Toxoplasma gondii infection[J]. Infect Immun, 2019, 87(2): e00789. | [33] | Yin K, Xu C, Zhao GH, et al. Epigenetic manipulation of psychiatric behavioral disorders induced by Toxoplasma gondii[J]. Front Cell Infect Microbiol, 2022, 12: 803502. | [34] | Lang D, Schott BH, van Ham M, et al. Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition[J]. J Neuroinflammation, 2018, 15(1): 216. | [35] | Ivashkiv LB. IFN-γ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(9): 545-558. | [36] | Vumma R, Johansson J, Venizelos N. Proinflammatory cytokines and oxidative stress decrease the transport of dopamine precursor tyrosine in human fibroblasts[J]. Neuropsychobiology, 2017, 75(4): 178-184. | [37] | Birck C, Ginolhac A, Pavlou MAS, et al. NF-κB and TNF affect the astrocytic differentiation from neural stem cells[J]. Cells, 2021, 10(4): 840. | [38] | Xing ME, Wang DW, Guo XG, et al. Update on the CD8+T cell immunity induced by Toxoplasma gondii infection in mice[J]. Heilongjiang Anim Sci Vet Med, 2017(13): 57-61. (in Chinese) | | (邢蒙恩, 王大为, 郭晓改, 等. 弓形虫感染引起小鼠体内CD8+T淋巴细胞免疫的研究[J]. 黑龙江畜牧兽医, 2017(13): 57-61.) | [39] | Soleymani E, Faizi F, Heidarimoghadam R, et al. Association of T. gondii infection with suicide: a systematic review and meta-analysis[J]. BMC Public Health, 2020, 20(1): 766. | [40] | Sadeghi M, Riahi SM, Mohammadi M, et al. An updated meta-analysis of the association between Toxoplasma gondii infection and risk of epilepsy[J]. Trans R Soc Trop Med Hyg, 2019, 113(8): 453-462. | [41] | Nayeri T, Sarvi S, Moosazadeh M, et al. Relationship between toxoplasmosis and autism: a systematic review and meta-analysis[J]. Microb Pathog, 2020, 147: 104434. | [42] | Yal?n Sapmaz ?, ?en S, ?zkan Y, et al. Relationship between Toxoplasma gondii seropositivity and depression in children and adolescents[J]. Psychiatry Res, 2019, 278: 263-267. | [43] | Xiao JC, Prandovszky E, Kannan G, et al. Toxoplasma gondii: biological parameters of the connection to schizophrenia[J]. Schizophr Bull, 2018, 44(5): 983-992. | [44] | Aisen PS, Cummings J, Jack CR Jr, et al. On the path to 2025: understanding the Alzheimer’s disease continuum[J]. Alzheimers Res Ther, 2017, 9(1): 60. | [45] | Torres L, Robinson SA, Kim DG, et al. Toxoplasma gondii alters NMDAR signaling and induces signs of Alzheimer’s disease in wild-type, C57BL/6 mice[J]. J Neuroinflammation, 2018, 15(1): 57. | [46] | Jauhar S, Johnstone M, McKenna PJ. Schizophrenia[J]. Lancet, 2022, 399(10323): 473-486. | [47] | David CN, Frias ES, Szu JI, et al. GLT-1-dependent disruption of CNS glutamate homeostasis and neuronal function by the protozoan parasite Toxoplasma gondii[J]. PLoS Pathog, 2016, 12(6): e1005643. | [48] | Yolken R, Torrey EF, Dickerson F. Evidence of increased exposure to Toxoplasma gondii in individuals with recent onset psychosis but not with established schizophrenia[J]. PLoS Negl Trop Dis, 2017, 11(11): e0006040. | [49] | Zhang C, Chen JT, Xin ZX, et al. Transcriptome analysis of mice brain chronically infected with Toxoplasma gondii and validation of the kynurenine pathway associated with depression[J]. Chin J Parasitol Parasit Dis, 2023, 41(3): 270-278. (in Chinese) | | (张驰, 陈嘉婷, 辛紫萱, 等. 弓形虫慢性感染小鼠脑转录组分析及与抑郁相关的犬尿氨酸通路的验证[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 270-278.) | [50] | Sperner-Unterweger B, Kohl C, Fuchs D. Immune changes and neurotransmitters: possible interactions in depression?[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2014, 48: 268-276. | [51] | Tyebji S, Seizova S, Hannan AJ, et al. Toxoplasmosis: a pathway to neuropsychiatric disorders[J]. Neurosci Biobehav Rev, 2019, 96: 72-92. | [52] | Falco-Walter J. Epilepsy-definition, classification, pathophysiology, and epidemiology[J]. Semin Neurol, 2020, 40(6): 617-623. | [53] | Feng Y, Wei ZH, Liu C, et al. Genetic variations in GABA metabolism and epilepsy[J]. Seizure, 2022, 101: 22-29. | [54] | Brooks JM, Carrillo GL, Su JM, et al. Toxoplasma gondii infections alter GABAergic synapses and signaling in the central nervous system[J]. mBio, 2015, 6(6): e01428-e01415. | [55] | Nelson AR, Sweeney MD, Sagare AP, et al. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease[J]. Biochim Biophys Acta, 2016, 1862(5): 887-900. | [56] | Bouscaren N, Pilleron S, Mbelesso P, et al. Prevalence of toxoplasmosis and its association with dementia in older adults in Central Africa: a result from the EPIDEMCA programme[J]. Trop Med Int Health, 2018, 23(12): 1304-1313. | [57] | Flegr J, Horá?ek J. Negative effects of latent toxoplasmosis on mental health[J]. Front Psychiatry, 2020, 10: 1012. | [58] | El Saftawy EA, Amin NM, Sabry RM, et al. Can Toxoplasma gondii pave the road for dementia?[J]. J Parasitol Res, 2020, 2020: 8859857. |
|