[1] | Hong Y, Fu Z, Cao X, et al. Changes in microRNA expression in response to Schistosoma japonicum infection[J]. Parasite Immunol, 2017, 39(2): e12416. | [2] | Chen QL, Zhang JQ, Zheng T, et al. The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis[J]. Parasit Vectors, 2019, 12(1): 611. | [3] | Sica GL, Choi IH, Zhu GF, et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity[J]. Immunity, 2003, 18(6): 849-861. | [4] | Zhou S, Jin X, Li YL, et al. Blockade of PD-1 signaling enhances Th2 cell responses and aggravates liver immunopathology in mice with schistosomiasis japonica[J]. PLoS Negl Trop Dis, 2016, 10(10): e0005094. | [5] | McRae KM, Stear MJ, Good B, et al. The host immune response to gastrointestinal nematode infection in sheep[J]. Parasite Immunol, 2015, 37(12): 605-613. | [6] | Li QT, Qiu MJ, Yang SL, et al. Alpha-fetoprotein regulates the expression of immune-related proteins through the NF-κB (P65) pathway in hepatocellular carcinoma cells[J]. J Oncol, 2020, 2020: 9327512. | [7] | MacGregor HL, Ohashi PS. Molecular pathways: evaluating the potential for B7-H4 as an immunoregulatory target[J]. Clin Cancer Res, 2017, 23(12): 2934-2941. | [8] | Ahangar NK, Hemmat N, Khalaj-Kondori M, et al. The regulatory cross-talk between microRNAs and novel members of the B7 family in human diseases: a scoping review[J]. Int J Mol Sci, 2021, 22(5): 2652. | [9] | Zhu HF, Li Y. Small-molecule targets in tumor immunotherapy[J]. Nat Prod Bioprospect, 2018, 8(4): 297-301. | [10] | Wikenheiser DJ, Stumhofer JS. ICOS co-stimulation: friend or foe?[J]. Front Immunol, 2016, 7: 304. | [11] | Mach P, K?ninger A, Reisch B, et al. Soluble PD-L1 and B7-H4 serum levels during the course of physiological pregnancy[J]. Am J Reprod Immunol, 2022, 87(3): e13519. | [12] | Janakiram M, Chinai JM, Fineberg S, et al. Expression, clinical significance, and receptor identification of the newest B7 family member HHLA2 protein[J]. Clin Cancer Res, 2015, 21(10): 2359-2366. | [13] | Esensten JH, Helou YA, Chopra G, et al. CD28 costimulation: From mechanism to therapy[J]. Immunity, 2016, 44(5): 973-988. | [14] | Linsley PS, Brady W, Grosmaire L, et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation[J]. J Exp Med, 1991, 173(3): 721-730. | [15] | Hosseini A, Gharibi T, Marofi F, et al. CTLA-4: from mechanism to autoimmune therapy[J]. Int Immunopharmacol, 2020, 80: 106221. | [16] | Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7[J]. J Exp Med, 1991, 174(3): 561-569. | [17] | Kraehenbuehl L, Weng CH, Eghbali S, et al. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways[J]. Nat Rev Clin Oncol, 2022, 19(1): 37-50. | [18] | Tian F, Xia CM, Luo W, et al. Effects of B7 costimulatory molecules on Th1/Th2 cytokine expression levels in the mice infected with Schistosoma japonicum[J]. J Trop Med, 2003, 3(2): 139-141, 206. (in Chinese) | | (田芳, 夏超明, 骆伟, 等. 协同刺激分子B7-1/2对日本血吸虫感染小鼠Th1/Th2细胞因子表达水平的影响[J]. 热带医学杂志, 2003, 3(2): 139-141, 206.) | [19] | Reiser H, Stadecker MJ. Costimulatory B7 molecules in the pathogenesis of infectious and autoimmune diseases[J]. N Engl J Med, 1996, 335(18): 1369-1377. | [20] | Subramanian G, Kazura JW, Pearlman E, et al. B7-2 requirement for helminth-induced granuloma formation and CD4 type 2 T helper cell cytokine expression[J]. J Immunol, 1997, 158(12): 5914-5920. | [21] | Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS)[J]. Curr Opin Immunol, 2010, 22(3): 326-332. | [22] | Nurieva RI, Duong J, Kishikawa H, et al. Transcriptional regulation of Th2 differentiation by inducible costimulator[J]. Immunity, 2003, 18(6): 801-811. | [23] | Yang Q, Qu JL, Jin CX, et al. Schistosoma japonicum infection promotes the response of Tfh cells through down-regulation of caspase-3-mediating apoptosis[J]. Front Immunol, 2019, 10: 2154. | [24] | Wang B, Liang S, Wang Y, et al. Th17 down-regulation is involved in reduced progression of schistosomiasis fibrosis in ICOSL KO mice[J]. PLoS Negl Trop Dis, 2015, 9(1): e0003434. | [25] | Chen XJ, Yang XW, Li Y, et al. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection[J]. PLoS Pathog, 2014, 10(5): e1004097. | [26] | Zhan TZ, Ma HH, Zhang TT, et al. Relation between ICOS signaling and Th9 cell polarization in mice infected with Schistosoma japonicum[J]. Chin J Schisto Control, 2018, 30(4): 436-439. (in Chinese) | | (战廷正, 马会会, 张婷婷, 等. ICOS信号与日本血吸虫感染小鼠Th9细胞极化的关系[J]. 中国血吸虫病防治杂志, 2018, 30(4): 436-439.) | [27] | Mak TW, Shahinian A, Yoshinaga SK, et al. Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell-dependent B cell responses[J]. Nat Immunol, 2003, 4(8): 765-772. | [28] | Heizmann B, Kastner P, Chan SS. The Ikaros family in lymphocyte development[J]. Curr Opin Immunol, 2018, 51: 14-23. | [29] | Wang Y, Cai R, Wang B, et al. Effects of Schistosoma japonicum infection on the CD28/CD86 signaling pathway and Th1/Th2 polarization in ICOS transgenic mice[J]. J Chin Med Univ, 2013, 42(6): 493-500. (in Chinese) | | (王瑜, 蔡茹, 王波, 等. ICOS转基因小鼠感染日本血吸虫对CD28/CD86表达及Th1/Th2极化的影响[J]. 中国医科大学学报, 2013, 42(6): 493-500.) | [30] | van der Vlugt LEPM, Obieglo K, Ozir-Fazalalikhan A, et al. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function[J]. Int J Parasitol, 2017, 47(9): 545-554. | [31] | Xu L, Qian X, Jin J, et al. Sex bias in generation and functional phenotypes of peripheral T follicular helper cells in schistosomiasis japonica[J]. Chin J Schisto Control, 2016, 28(2): 167-171. (in Chinese) | | (许磊, 钱香, 金姣, 等. 性别对日本血吸虫感染过程中滤泡辅助性T细胞比例和活性影响的初步分析[J]. 中国血吸虫病防治杂志, 2016, 28(2): 167-171.) | [32] | Zhang YM, Jiang YY, Wang YJ, et al. Higher frequency of circulating PD-1highCXCR5+CD4+ Tfh cells in patients with chronic schistosomiasis[J]. Int J Biol Sci, 2015, 11(9): 1049-1055. | [33] | Xie SH, Wei HX, Peng AP, et al. Ikzf2 regulates the development of ICOS+ Th cells to mediate immune response in the spleen of S. japonicum-infected C57BL/6 mice[J]. Front Immunol, 2021, 12: 687919. | [34] | Xia CM, Pu XK, Gong W, et al. Immune response and immunopathology in inducible costimulatory molecule(ICOS) transgenic mice infected with Schistosoma japonicum[J]. Chin J Parasitol Parasit Dis, 2006, 24(5): 349-352. (in Chinese) | | 夏超明, 濮翔科, 龚唯, 等. 日本血吸虫感染可诱导共刺激分子(ICOS)转基因小鼠的免疫应答及其病理反应[J]. 中国寄生虫学与寄生虫病杂志, 2006, 24(5): 349-352.) | [35] | Wang YY, Lin C, Cao Y, et al. Up-regulation of interleukin-21 contributes to liver pathology of schistosomiasis by driving GC immune responses and activating HSCs in mice[J]. Sci Rep, 2017, 7(1): 16682. | [36] | Delmas D, Hermetet F, Aires V. PD-1/PD-L1 checkpoints and resveratrol: a controversial new way for a therapeutic strategy[J]. Cancers (Basel), 2021, 13(18): 4509. | [37] | Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway[J]. Nat Rev Immunol, 2018, 18(3): 153-167. | [38] | Smith P, Walsh CM, Mangan NE, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages[J]. J Immunol, 2004, 173(2): 1240-1248. | [39] | Zhang YM, Wu YL, Liu H, et al. Granulocytic myeloid-derived suppressor cells inhibit T follicular helper cells during experimental Schistosoma japonicum infection[J]. Parasites Vectors, 2021, 14(1): 497. | [40] | Gao YN, Chen L, Hou M, et al. TLR2 directing PD-L2 expression inhibit T cells response in Schistosoma japonicum infection[J]. PLoS One, 2013, 8(12): e82480. | [41] | Khan AR, Hams E, Floudas A, et al. PD-L1hi B cells are critical regulators of humoral immunity[J]. Nat Commun, 2015, 6: 5997. | [42] | Zhang Y, Morgan R, Chen C, et al. Mammary-tumor-educated B cells acquire LAP/TGF-β and PD-L1 expression and suppress anti-tumor immune responses[J]. Int Immunol, 2016, 28(9): 423-433. | [43] | Xiao JL, Guan F, Sun L, et al. B cells induced by Schistosoma japonicum infection display diverse regulatory phenotypes and modulate CD4+ T cell response[J]. Parasit Vectors, 2020, 13(1): 147. | [44] | Feng RR, Chen Y, Liu Y, et al. The role of B7-H3 in tumors and its potential in clinical application[J]. Int Immunopharmacol, 2021, 101: 108153. | [45] | Nagai S, Azuma M. The CD28-B7 family of co-signaling molecules[J]. Adv Exp Med Biol, 2019, 1189: 25-51. | [46] | Ueno T, Yeung MY, McGrath M, et al. Intact B7-H3 signaling promotes allograft prolongation through preferential suppression of Th1 effector responses[J]. Eur J Immunol, 2012, 42(9): 2343-2353. | [47] | Liu F, Zhang T, Zou ST, et al. B7-H3 promotes cell migration and invasion through the Jak2/Stat3/MMP9 signaling pathway in colorectal cancer[J]. Mol Med Rep, 2015, 12(4): 5455-5460. | [48] | Li YC, Guo GN, Song J, et al. B7-H3 promotes the migration and invasion of human bladder cancer cells via the PI3K/Akt/STAT3 signaling pathway[J]. J Cancer, 2017, 8(5): 816-824. | [49] | Li SX, Zhang GB, Sun HH, et al. Establishment of a sandwich ELISA for testing serum SB7-H3 and detection of SB7-H3 levels in liver disease[J]. Chin J Cell Mol Immunol, 2012, 28(1): 84-86, 90. (in Chinese) | | (李淑湘, 张光波, 孙海洪, 等. 人可溶性B7-H3酶联试剂盒的研制及在肝病患者血清中水平的检测[J]. 细胞与分子免疫学杂志, 2012, 28(1): 84-86, 90.) |
|