中国寄生虫学与寄生虫病杂志 ›› 2022, Vol. 40 ›› Issue (5): 661-667.doi: 10.12140/j.issn.1000-7423.2022.05.015
收稿日期:
2022-02-01
修回日期:
2022-03-24
出版日期:
2022-10-30
发布日期:
2022-10-10
通讯作者:
殷国荣
作者简介:
李润花(1963-),女,硕士,教授,从事寄生虫感染与免疫研究。E-mail: runhual@163.com
基金资助:
LI Run-hua1(), YIN Guo-rong2,*()
Received:
2022-02-01
Revised:
2022-03-24
Online:
2022-10-30
Published:
2022-10-10
Contact:
YIN Guo-rong
Supported by:
摘要:
刚地弓形虫可感染几乎所有温血动物,引起人兽共患弓形虫病。尽管弓形虫病疫苗的研发已取得很大进展,但目前仍无预防人类弓形虫病的疫苗。研究发现,只用一种或几种候选抗原仅能诱导对弓形虫的部分保护性免疫,这限制了它们的应用。因此,利用速殖子、缓殖子和子孢子的多种抗原表位,开发由寄生虫生活史各个阶段组成的多价疫苗可能是完全保护性免疫所必需的。选用寄生虫生活史不同阶段的多表位组合已成为获得安全和有效疫苗的最佳策略。基于多表位的疫苗因其诱导保护性免疫应答能力强而作为新的疫苗候选物受到关注。本文概述了多表位疫苗的免疫学基础、设计与构建策略,总结了弓形虫多表位疫苗的最新研究进展,并展望了多表位疫苗作为一种新的疫苗开发和评估策略的应用前景。
中图分类号:
李润花, 殷国荣. 刚地弓形虫病多表位疫苗的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 661-667.
LI Run-hua, YIN Guo-rong. Research advances of multi-epitope vaccine candidates against toxoplasmosis[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(5): 661-667.
表1
弓形虫表位疫苗的预测表位
抗原基因 | 表位氨基酸序列 | 氨基酸数 | 文献 |
---|---|---|---|
表面抗原1 SAG1 | TCPDKKSTA | 9 | [ |
KSFKDILPK | 9 | [ | |
LGPVKLSAEGPT | 12 | [ | |
TCPDKKSTA | 9 | [ | |
ILPKLTENPW | 10 | ||
表面抗原2 SAG2 | STFWPCLLR | 9 | [ |
顶端膜抗原1 AMA1 | CAELCDPSNKPGHLL | 15 | [ |
致密颗粒1 GRA1 | DTMKSMQRDED | 11 | [ |
致密颗粒2 GRA2 | TAAKTHTVRGFKV | 13 | [ |
致密颗粒4 GRA4 | SGLTGVKDS | 9 | [ |
致密颗粒5 GRA5 | AVVSLLRLLK | 10 | [ |
致密颗粒6 GRA6 | AMLTAFFLR | 9 | [ |
HPGSVNEFDF | 10 | [ | |
致密颗粒7 GRA7 | SYFAADRLVP | 10 | [ |
棒状体蛋白2 ROP2 | GDVVIEELFNRIPETS | 16 | [ |
棒状体颈部蛋白2 RON2 | LTAGGPLPHGSWSWSGTPPEVQTTGGSQIS | 30 | [ |
棒状体颈部蛋白4 RON4 | KEQFFQFLQHLSADYPKQVQTVYEFLGWVADK | 32 |
[1] |
Dubey JP. History of the discovery of the life cycle of Toxoplasma gondii[J]. Int J Parasitol, 2009, 39(8): 877-882.
pmid: 19630138 |
[2] |
Barros M,, Teixeira D,, Vilanova M, et al. Vaccines in congenital toxoplasmosis: advances and perspectives[J]. Front Immunol, 2021, 11: 621997.
doi: 10.3389/fimmu.2020.621997 |
[3] |
Csep A,, Vaida LL,, Negruţiu BM, et al. Research on demographic, clinical and paraclinical aspects in pregnant women infected with Toxoplasma gondii[J]. Exp Ther Med, 2022, 23(2): 123.
doi: 10.3892/etm.2021.11046 |
[4] |
Hajissa K,, Zakaria R,, Suppian R, et al. An evaluation of a recombinant multiepitope based antigen for detection of Toxoplasma gondii specific antibodies[J]. BMC Infect Dis, 2017, 17(1): 807.
doi: 10.1186/s12879-017-2920-9 pmid: 29284420 |
[5] |
Lakhrif Z,, Moreau A,, Hérault B, et al. Targeted delivery of Toxoplasma gondii antigens to dendritic cells promote immunogenicity and protective efficiency against toxoplasmosis[J]. Front Immunol, 2018, 9: 317.
doi: 10.3389/fimmu.2018.00317 pmid: 29515595 |
[6] |
Zhang ZC,, Li YH,, Wang MY, et al. Immune protection of rhoptry protein 21 (ROP21) of Toxoplasma gondii as a DNA vaccine against toxoplasmosis[J]. Front Microbiol, 2018, 9: 909.
doi: 10.3389/fmicb.2018.00909 |
[7] |
Liu Y,, Cao AP,, Li YW, et al. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice[J]. BMC Infect Dis, 2017, 17(1): 403.
doi: 10.1186/s12879-017-2507-5 |
[8] |
Li YW,, Zhou HY. Moving towards improved vaccines for Toxoplasma gondii[J]. Expert Opin Biol Ther, 2018, 18(3): 273-280.
doi: 10.1080/14712598.2018.1413086 |
[9] | Chu KB,, Quan FS. Advances in Toxoplasma gondii vaccines: current strategies and challenges for vaccine development[J]. Vaccines (Basel), 2021, 9(5): 413. |
[10] |
Hiszczyńska-Sawicka E,, Gatkowska JM,, Grzybowski MM, et al. Veterinary vaccines against toxoplasmosis[J]. Parasitology, 2014, 141(11): 1365-1378.
doi: 10.1017/S0031182014000481 pmid: 24805159 |
[11] |
Zhou CX,, Zhou DH,, Liu GX, et al. Transcriptomic analysis of porcine PBMCs infected with Toxoplasma gondii RH strain[J]. Acta Trop, 2016, 154: 82-88.
doi: 10.1016/j.actatropica.2015.11.009 |
[12] |
Cong H,, Yuan Q,, Zhao QL, et al. Comparative efficacy of a multi-epitope DNA vaccine via intranasal, peroral, and intramuscular delivery against lethal Toxoplasma gondii infection in mice[J]. Parasit Vectors, 2014, 7: 145.
doi: 10.1186/1756-3305-7-145 pmid: 24685150 |
[13] |
Foroutan M,, Ghaffarifar F. Calcium-dependent protein kinases are potential targets for Toxoplasma gondii vaccine[J]. Clin Exp Vaccine Res, 2018, 7(1): 24-36.
doi: 10.7774/cevr.2018.7.1.24 |
[14] |
Cong H,, Gu QM,, Yin HE, et al. Multi-epitope DNA vaccine linked to the A2/B subunit of cholera toxin protect mice against Toxoplasma gondii[J]. Vaccine, 2008, 26(31): 3913-3921.
doi: 10.1016/j.vaccine.2008.04.046 pmid: 18555564 |
[15] |
Cheong FW,, Fong MY,, Lau YL. Identification and characterization of epitopes on Plasmodium knowlesi merozoite surface protein-142 (MSP-142) using synthetic peptide library and phage display library[J]. Acta Trop, 2016, 154: 89-94.
doi: 10.1016/j.actatropica.2015.11.005 pmid: 26624919 |
[16] |
Stoloff GA,, Caparros-Wanderley W. Synthetic multi-epitope peptides identified in silico induce protective immunity against multiple influenza serotypes[J]. Eur J Immunol, 2007, 37(9): 2441-2449.
pmid: 17668898 |
[17] | Alonso-Padilla J,, Lafuente EM,, Reche PA. Computer-aided design of an epitope-based vaccine against Epstein-Barr virus[J]. J Immunol Res, 2017, 2017: 9363750. |
[18] |
Thompson CP,, Lourenço J,, Walters AA, et al. A naturally protective epitope of limited variability as an influenza vaccine target[J]. Nat Commun, 2018, 9(1): 3859.
doi: 10.1038/s41467-018-06228-8 pmid: 30242149 |
[19] |
Huang SY,, Jensen MR,, Rosenberg CA, et al. In silico and in vivo analysis of Toxoplasma gondii epitopes by correlating survival data with peptide-MHC-I binding affinities[J]. Int J Infect Dis, 2016, 48: 14-19.
doi: 10.1016/j.ijid.2016.04.014 |
[20] |
Palatnik-de-Sousa CB,, Soares IS,, Rosa DS. Editorial: epitope discovery and synthetic vaccine design[J]. Front Immunol, 2018, 9: 826.
doi: 10.3389/fimmu.2018.00826 pmid: 29720983 |
[21] | Ma FS,, Zhang L,, Wang Y, et al. Advance on prediction methods of B-cell antigen epitope[J]. China Animal Husb Vet Med, 2016, 43(1): 63-67. (in Chinese) |
( 马凡舒,, 张蕾,, 王洋, 等. B细胞抗原表位预测方法的研究进展[J]. 中国畜牧兽医, 2016, 43(1): 63-67.) | |
[22] |
Hajissa K,, Zakaria R,, Suppian R, et al. Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection: a mini-review[J]. J Adv Vet Anim Res, 2019, 6(2): 174-182.
doi: 10.5455/javar.2019.f329 |
[23] |
Pulendran B,, Ahmed R. Immunological mechanisms of vaccination[J]. Nat Immunol, 2011, 12(6): 509-517.
doi: 10.1038/ni.2039 pmid: 21739679 |
[24] | Bastos LM,, Macêdo AG Jr,, Silva MV, et al. Toxoplasma gondii-derived synthetic peptides containing B-and T-cell epitopes from GRA2 protein are able to enhance mice survival in a model of experimental toxoplasmosis[J]. Front Cell Infect Microbiol, 2016, 6: 59. |
[25] |
Hajissa K,, Zakaria R,, Suppian R, et al. Immunogenicity of multiepitope vaccine candidate against Toxoplasma gondii infection in BALB/c mice[J]. Iran J Parasitol, 2018, 13(2): 215-224.
pmid: 30069205 |
[26] |
Zhang TE,, Yin LT,, Li RH, et al. Protective immunity induced by peptides of AMA1, RON2 and RON4 containing T-and B-cell epitopes via an intranasal route against toxoplasmosis in mice[J]. Parasit Vectors, 2015, 8: 15.
doi: 10.1186/s13071-015-0636-5 |
[27] |
Dodangeh S,, Fasihi-Ramandi M,, Daryani A, et al. Protective efficacy by a novel multi-epitope vaccine, including MIC3, ROP8, and SAG1, against acute Toxoplasma gondii infection in BALB/c mice[J]. Microb Pathog, 2021, 153: 104764.
doi: 10.1016/j.micpath.2021.104764 |
[28] |
Shi JD,, Zhang J,, Li SJ, et al. Epitope-based vaccine target screening against highly pathogenic MERS-CoV: an in silico approach applied to emerging infectious diseases[J]. PLoS One, 2015, 10(12): e0144475.
doi: 10.1371/journal.pone.0144475 |
[29] |
Patronov A,, Doytchinova I. T-cell epitope vaccine design by immunoinformatics[J]. Open Biol, 2013, 3(1): 120139.
doi: 10.1098/rsob.120139 |
[30] |
Correia BE,, Bates JT,, Loomis RJ, et al. Proof of principle for epitope-focused vaccine design[J]. Nature, 2014, 507(7491): 201-206.
doi: 10.1038/nature12966 |
[31] |
Zhou J,, Wang L,, Lu G, et al. Epitope analysis and protection by a ROP19 DNA vaccine against Toxoplasma gondii[J]. Parasite, 2016, 23: 17.
doi: 10.1051/parasite/2016017 |
[32] |
Lu G,, Wang L,, Zhou AH, et al. Epitope analysis, expression and protection of SAG5A vaccine against Toxoplasma gondii[J]. Acta Trop, 2015, 146: 66-72.
doi: 10.1016/j.actatropica.2015.03.013 |
[33] |
Mahajan B,, Berzofsky JA,, Boykins RA, et al. Multiple antigen peptide vaccines against Plasmodium falciparum malaria[J]. Infect Immun, 2010, 78(11): 4613-4624.
doi: 10.1128/IAI.00533-10 pmid: 20823210 |
[34] |
Khan AM,, Miotto O,, Heiny AT, et al. A systematic bioinformatics approach for selection of epitope-based vaccine targets[J]. Cell Immunol, 2006, 244(2): 141-147.
pmid: 17434154 |
[35] |
Moise L,, Gutierrez A,, Kibria F, et al. iVAX: an integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines[J]. Hum Vaccin Immunother, 2015, 11(9): 2312-2321.
doi: 10.1080/21645515.2015.1061159 |
[36] |
de Groot AS,, Moise L,, Terry F, et al. Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools[J]. Front Immunol, 2020, 11: 442.
doi: 10.3389/fimmu.2020.00442 pmid: 32318055 |
[37] |
Zhang NZ,, Chen J,, Wang M, et al. Vaccines against Toxoplasma gondii: new developments and perspectives[J]. Expert Rev Vaccines, 2013, 12(11): 1287-1299.
doi: 10.1586/14760584.2013.844652 |
[38] | Muñoz-Medina JE,, Sánchez-Vallejo CJ,, Méndez-Tenorio A, et al. In silico identification of highly conserved epitopes of influenza A H1N1, H2N2, H3N2, and H5N1 with diagnostic and vaccination potential[J]. Biomed Res Int, 2015, 2015: 813047. |
[39] | Sahay B,, Nguyen CQ,, Yamamoto JK. Conserved HIV epitopes for an effective HIV vaccine[J]. J Clin Cell Immunol, 2017, 8(4): 518. |
[40] | Comber JD,, Karabudak A,, Shetty V, et al. MHC class Ⅰ presented T cell epitopes as potential antigens for therapeutic vaccine against HBV chronic infection[J]. Hepat Res Treat, 2014, 2014: 860562. |
[41] |
Ramana J,, Mehla K. Immunoinformatics and epitope prediction[J]. Methods Mol Biol, 2020, 2131: 155-171.
doi: 10.1007/978-1-0716-0389-5_6 pmid: 32162252 |
[42] |
Forouharmehr A. Engineering an efficient poly-epitope vaccine against Toxoplasma gondii infection: a computational vaccinology study[J]. Microb Pathog, 2021, 152: 104646.
doi: 10.1016/j.micpath.2020.104646 |
[43] |
Parvizpour S,, Pourseif MM,, Razmara J, et al. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches[J]. Drug Discov Today, 2020, 25(6): 1034-1042.
doi: S1359-6446(20)30113-6 pmid: 32205198 |
[44] | Ip PP,, Nijman HW,, Daemen T. Epitope prediction assays combined with validation assays strongly narrows down putative cytotoxic T lymphocyte epitopes[J]. Vaccines (Basel), 2015, 3(2): 203-220. |
[45] |
Agallou M,, Athanasiou E,, Koutsoni O, et al. Experimental validation of multi-epitope peptides including promising MHC class Ⅰ- and Ⅱ-restricted epitopes of four known Leishmania infantum proteins[J]. Front Immunol, 2014, 5: 268.
doi: 10.3389/fimmu.2014.00268 pmid: 24959167 |
[46] |
Saha S,, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network[J]. Proteins, 2006, 65(1): 40-48.
doi: 10.1002/prot.21078 |
[47] |
Javadi Mamaghani A,, Fathollahi A,, Spotin A, et al. Candidate antigenic epitopes for vaccination and diagnosis strategies of Toxoplasma gondii infection: a review[J]. Microb Pathog, 2019, 137: 103788.
doi: 10.1016/j.micpath.2019.103788 |
[48] |
Sette A,, Fikes J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery[J]. Curr Opin Immunol, 2003, 15(4): 461-470.
pmid: 12900280 |
[49] |
Xu QQ,, Ma XJ,, Wang FK, et al. Design and construction of a chimeric multi-epitope gene as an epitope-vaccine strategy against ALV-J[J]. Protein Expr Purif, 2015, 106: 18-24.
doi: 10.1016/j.pep.2014.10.007 |
[50] |
Parmiani G,, Russo V,, Maccalli C, et al. Peptide-based vaccines for cancer therapy[J]. Hum Vaccin Immunother, 2014, 10(11): 3175-3178.
doi: 10.4161/hv.29418 |
[51] |
Li MD,, Kaminskas LM,, Marasini N. Recent advances in nano/microparticle-based oral vaccines[J]. J Pharm Investig, 2021, 51(4): 425-438.
doi: 10.1007/s40005-021-00537-9 |
[52] |
El Bissati K,, Zhou Y,, Dasgupta D, et al. Effectiveness of a novel immunogenic nanoparticle platform for Toxoplasma peptide vaccine in HLA transgenic mice[J]. Vaccine, 2014, 32(26): 3243-3248.
doi: 10.1016/j.vaccine.2014.03.092 pmid: 24736000 |
[53] | Bissati KE,, Chentoufi AA,, Krishack PA, et al. Adjuvanted multi-epitope vaccines protect HLA-A*11: 01 transgenic mice against Toxoplasma gondii[J]. JCI Insight, 2016, 1(15): e85955. |
[54] |
Wang YH,, Wang M,, Wang GX, et al. Increased survival time in mice vaccinated with a branched lysine multiple antigenic peptide containing B- and T-cell epitopes from T. gondii antigens[J]. Vaccine, 2011, 29(47): 8619-8623.
doi: 10.1016/j.vaccine.2011.09.016 |
[55] |
Cao AP,, Liu Y,, Wang JJ, et al. Toxoplasma gondii: vaccination with a DNA vaccine encoding T- and B-cell epitopes of SAG1, GRA2, GRA7 and ROP16 elicits protection against acute toxoplasmosis in mice[J]. Vaccine, 2015, 33(48): 6757-6762.
doi: 10.1016/j.vaccine.2015.10.077 pmid: 26518401 |
[56] |
Blanchard N,, Gonzalez F,, Schaeffer M, et al. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum[J]. Nat Immunol, 2008, 9(8): 937-944.
doi: 10.1038/ni.1629 pmid: 18587399 |
[57] |
Sun XM,, Zou J,, Elashram Saeed AA, et al. DNA vaccination with a gene encoding Toxoplasma gondii GRA6 induces partially protection in BALB/c mice with an H-2Ld allele[J]. Parasit Vectors, 2011, 4: 213.
doi: 10.1186/1756-3305-4-213 |
[58] |
Foroutan M,, Ghaffarifar F,, Sharifi Z, et al. Vaccination with a novel multi-epitope ROP8 DNA vaccine against acute Toxoplasma gondii infection induces strong B and T cell responses in mice[J]. Comp Immunol Microbiol Infect Dis, 2020, 69: 101413.
doi: 10.1016/j.cimid.2020.101413 |
[59] |
Foroutan M,, Barati M,, Ghaffarifar F. Enhancing immune responses by a novel multi-epitope ROP8 DNA vaccine plus interleukin-12 plasmid as a genetic adjuvant against acute Toxoplasma gondii infection in BALB/c mice[J]. Microb Pathog, 2020, 147: 104435.
doi: 10.1016/j.micpath.2020.104435 |
[60] |
Khodadadi M,, Ghaffarifar F,, Dalimi A, et al. Immunogenicity of in-silico designed multi-epitope DNA vaccine encoding SAG1, SAG3 and SAG5 of Toxoplasma gondii adjuvanted with CpG-ODN against acute toxoplasmosis in BALB/c mice[J]. Acta Trop, 2021, 216: 105836.
doi: 10.1016/j.actatropica.2021.105836 |
[61] |
Guo JJ,, Zhou AH Sun XH, et al. Immunogenicity of a virus-like-particle vaccine containing multiple antigenic epitopes of Toxoplasma gondii against acute and chronic toxoplasmosis in mice[J]. Front Immunol, 2019, 10: 592.
doi: 10.3389/fimmu.2019.00592 |
[1] | 赵紫琪, 吕芳丽. 免疫功能健全者获得性弓形虫病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 228-235. |
[2] | 黄子芸, 吕芳丽. 实体器官移植与弓形虫病[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 386-392. |
[3] | 苏海莹, 杨淑君, 彭鸿娟, 王春梅. 弓形虫病临床误诊现状分析[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(3): 342-345. |
[4] | 董莹1*,邓艳1,徐艳春1,陈梦妮1,毛祥华1,孙艾明2,王剑1. 不同感染来源恶性疟原虫裂殖子表面蛋白3基因多态性分析及抗原表位预测[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3): 3-210-217. |
[5] | 王钊哲, 许瑞, 洪炀, 林矫矫, 陆珂, 李浩, 陈兆国, 石耀军, 吴思敏, 江嘉欣, 李嘉静, 朱传刚. 刚地弓形虫表面抗原1、2 B细胞表位基因的融合表达和鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(6): 575-579. |
[6] | 沈继龙*. 弓形虫病的若干术语释义及实验室诊断的解读与处置策略[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(4): 13-382-386. |
[7] | 闻礼永1*, 熊彦红2, 严晓岚1, 郑彬2, 官亚宜2, 张剑锋1, 林丹丹3, 周晓农2. 对“试论《弓形虫病的诊断》(WS/T 486-2015)标准的不足并探讨孕妇弓形虫感染的处理”一文的回复[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(4): 15-390-395. |
[8] | 魏超君1,贾彦娟1,徐辉1,吴玲1,卢思奇2,李永红1*. 蓝氏贾第鞭毛虫α-8贾第素特异性优势抗原表位肽的抗原性分析[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(5): 1-389-393. |
[9] | 严晓岚1,闻礼永1*,官亚宜2,张剑锋1,林丹丹3. 《弓形虫病的诊断》标准解读[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(4): 18-387-388,封三. |
[10] | 卢致民1,王燕1,张子扬2,唐宏炜1,索勋3 *. 弓形虫感染间接免疫荧光检测试剂盒的检测效果评价[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(5): 4-346-351. |
[11] | 陶艳琳, 赵雪涛, 付永锋, 汤宇帆, 李申生, 程训佳. 上海市徐汇区公共卫生从业人员弓形虫感染的血清学调查分析[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(6): 19-495-497. |
[12] | 李玉娇1,杨晶2,赵慧1,贾海英3,张丽娜4,刘晓霞4,马秀敏4,温浩1,丁剑冰1,4 *. 细粒棘球绦虫EgA31重组蛋白的抗原表位分析预测[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(1): 19-78-80. |
[13] | 郭凡吉;王艳;李晔;彭金彪;洪炀;邱春辉;陈实;傅志强;石耀军;林矫矫. 日本血吸虫重组抗原SjPGAM-SjEnol的保护性免疫效果评价[J]. 中国寄生虫学与寄生虫病杂志, 2010, 28(4): 2-251. |
[14] | 江莉;王真瑜;马晓疆;张小萍;蔡黎. 间日疟原虫和恶性疟原虫乳酸脱氢酶基因的序列和重组抗原表位分析[J]. 中国寄生虫学与寄生虫病杂志, 2010, 28(2): 5-107. |
[15] | 陈晓光;谭峰. 弓形虫研究的过去、现在与未来[J]. 中国寄生虫学与寄生虫病杂志, 2009, 27(5): 9-431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||