[1] | Dubey JP. History of the discovery of the life cycle of Toxoplasma gondii[J]. Int J Parasitol, 2009, 39(8): 877-882. | [2] | Barros M,, Teixeira D,, Vilanova M, et al. Vaccines in congenital toxoplasmosis: advances and perspectives[J]. Front Immunol, 2021, 11: 621997. | [3] | Csep A,, Vaida LL,, Negrut?iu BM, et al. Research on demographic, clinical and paraclinical aspects in pregnant women infected with Toxoplasma gondii[J]. Exp Ther Med, 2022, 23(2): 123. | [4] | Hajissa K,, Zakaria R,, Suppian R, et al. An evaluation of a recombinant multiepitope based antigen for detection of Toxoplasma gondii specific antibodies[J]. BMC Infect Dis, 2017, 17(1): 807. | [5] | Lakhrif Z,, Moreau A,, Hérault B, et al. Targeted delivery of Toxoplasma gondii antigens to dendritic cells promote immunogenicity and protective efficiency against toxoplasmosis[J]. Front Immunol, 2018, 9: 317. | [6] | Zhang ZC,, Li YH,, Wang MY, et al. Immune protection of rhoptry protein 21 (ROP21) of Toxoplasma gondii as a DNA vaccine against toxoplasmosis[J]. Front Microbiol, 2018, 9: 909. | [7] | Liu Y,, Cao AP,, Li YW, et al. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice[J]. BMC Infect Dis, 2017, 17(1): 403. | [8] | Li YW,, Zhou HY. Moving towards improved vaccines for Toxoplasma gondii[J]. Expert Opin Biol Ther, 2018, 18(3): 273-280. | [9] | Chu KB,, Quan FS. Advances in Toxoplasma gondii vaccines: current strategies and challenges for vaccine development[J]. Vaccines (Basel), 2021, 9(5): 413. | [10] | Hiszczyńska-Sawicka E,, Gatkowska JM,, Grzybowski MM, et al. Veterinary vaccines against toxoplasmosis[J]. Parasitology, 2014, 141(11): 1365-1378. | [11] | Zhou CX,, Zhou DH,, Liu GX, et al. Transcriptomic analysis of porcine PBMCs infected with Toxoplasma gondii RH strain[J]. Acta Trop, 2016, 154: 82-88. | [12] | Cong H,, Yuan Q,, Zhao QL, et al. Comparative efficacy of a multi-epitope DNA vaccine via intranasal, peroral, and intramuscular delivery against lethal Toxoplasma gondii infection in mice[J]. Parasit Vectors, 2014, 7: 145. | [13] | Foroutan M,, Ghaffarifar F. Calcium-dependent protein kinases are potential targets for Toxoplasma gondii vaccine[J]. Clin Exp Vaccine Res, 2018, 7(1): 24-36. | [14] | Cong H,, Gu QM,, Yin HE, et al. Multi-epitope DNA vaccine linked to the A2/B subunit of cholera toxin protect mice against Toxoplasma gondii[J]. Vaccine, 2008, 26(31): 3913-3921. | [15] | Cheong FW,, Fong MY,, Lau YL. Identification and characterization of epitopes on Plasmodium knowlesi merozoite surface protein-142 (MSP-142) using synthetic peptide library and phage display library[J]. Acta Trop, 2016, 154: 89-94. | [16] | Stoloff GA,, Caparros-Wanderley W. Synthetic multi-epitope peptides identified in silico induce protective immunity against multiple influenza serotypes[J]. Eur J Immunol, 2007, 37(9): 2441-2449. | [17] | Alonso-Padilla J,, Lafuente EM,, Reche PA. Computer-aided design of an epitope-based vaccine against Epstein-Barr virus[J]. J Immunol Res, 2017, 2017: 9363750. | [18] | Thompson CP,, Lourenço J,, Walters AA, et al. A naturally protective epitope of limited variability as an influenza vaccine target[J]. Nat Commun, 2018, 9(1): 3859. | [19] | Huang SY,, Jensen MR,, Rosenberg CA, et al. In silico and in vivo analysis of Toxoplasma gondii epitopes by correlating survival data with peptide-MHC-I binding affinities[J]. Int J Infect Dis, 2016, 48: 14-19. | [20] | Palatnik-de-Sousa CB,, Soares IS,, Rosa DS. Editorial: epitope discovery and synthetic vaccine design[J]. Front Immunol, 2018, 9: 826. | [21] | Ma FS,, Zhang L,, Wang Y, et al. Advance on prediction methods of B-cell antigen epitope[J]. China Animal Husb Vet Med, 2016, 43(1): 63-67. (in Chinese) | [21] | ( 马凡舒,, 张蕾,, 王洋, 等. B细胞抗原表位预测方法的研究进展[J]. 中国畜牧兽医, 2016, 43(1): 63-67.) | [22] | Hajissa K,, Zakaria R,, Suppian R, et al. Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection: a mini-review[J]. J Adv Vet Anim Res, 2019, 6(2): 174-182. | [23] | Pulendran B,, Ahmed R. Immunological mechanisms of vaccination[J]. Nat Immunol, 2011, 12(6): 509-517. | [24] | Bastos LM,, Macêdo AG Jr,, Silva MV, et al. Toxoplasma gondii-derived synthetic peptides containing B-and T-cell epitopes from GRA2 protein are able to enhance mice survival in a model of experimental toxoplasmosis[J]. Front Cell Infect Microbiol, 2016, 6: 59. | [25] | Hajissa K,, Zakaria R,, Suppian R, et al. Immunogenicity of multiepitope vaccine candidate against Toxoplasma gondii infection in BALB/c mice[J]. Iran J Parasitol, 2018, 13(2): 215-224. | [26] | Zhang TE,, Yin LT,, Li RH, et al. Protective immunity induced by peptides of AMA1, RON2 and RON4 containing T-and B-cell epitopes via an intranasal route against toxoplasmosis in mice[J]. Parasit Vectors, 2015, 8: 15. | [27] | Dodangeh S,, Fasihi-Ramandi M,, Daryani A, et al. Protective efficacy by a novel multi-epitope vaccine, including MIC3, ROP8, and SAG1, against acute Toxoplasma gondii infection in BALB/c mice[J]. Microb Pathog, 2021, 153: 104764. | [28] | Shi JD,, Zhang J,, Li SJ, et al. Epitope-based vaccine target screening against highly pathogenic MERS-CoV: an in silico approach applied to emerging infectious diseases[J]. PLoS One, 2015, 10(12): e0144475. | [29] | Patronov A,, Doytchinova I. T-cell epitope vaccine design by immunoinformatics[J]. Open Biol, 2013, 3(1): 120139. | [30] | Correia BE,, Bates JT,, Loomis RJ, et al. Proof of principle for epitope-focused vaccine design[J]. Nature, 2014, 507(7491): 201-206. | [31] | Zhou J,, Wang L,, Lu G, et al. Epitope analysis and protection by a ROP19 DNA vaccine against Toxoplasma gondii[J]. Parasite, 2016, 23: 17. | [32] | Lu G,, Wang L,, Zhou AH, et al. Epitope analysis, expression and protection of SAG5A vaccine against Toxoplasma gondii[J]. Acta Trop, 2015, 146: 66-72. | [33] | Mahajan B,, Berzofsky JA,, Boykins RA, et al. Multiple antigen peptide vaccines against Plasmodium falciparum malaria[J]. Infect Immun, 2010, 78(11): 4613-4624. | [34] | Khan AM,, Miotto O,, Heiny AT, et al. A systematic bioinformatics approach for selection of epitope-based vaccine targets[J]. Cell Immunol, 2006, 244(2): 141-147. | [35] | Moise L,, Gutierrez A,, Kibria F, et al. iVAX: an integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines[J]. Hum Vaccin Immunother, 2015, 11(9): 2312-2321. | [36] | de Groot AS,, Moise L,, Terry F, et al. Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools[J]. Front Immunol, 2020, 11: 442. | [37] | Zhang NZ,, Chen J,, Wang M, et al. Vaccines against Toxoplasma gondii: new developments and perspectives[J]. Expert Rev Vaccines, 2013, 12(11): 1287-1299. | [38] | Muñoz-Medina JE,, Sánchez-Vallejo CJ,, Méndez-Tenorio A, et al. In silico identification of highly conserved epitopes of influenza A H1N1, H2N2, H3N2, and H5N1 with diagnostic and vaccination potential[J]. Biomed Res Int, 2015, 2015: 813047. | [39] | Sahay B,, Nguyen CQ,, Yamamoto JK. Conserved HIV epitopes for an effective HIV vaccine[J]. J Clin Cell Immunol, 2017, 8(4): 518. | [40] | Comber JD,, Karabudak A,, Shetty V, et al. MHC class Ⅰ presented T cell epitopes as potential antigens for therapeutic vaccine against HBV chronic infection[J]. Hepat Res Treat, 2014, 2014: 860562. | [41] | Ramana J,, Mehla K. Immunoinformatics and epitope prediction[J]. Methods Mol Biol, 2020, 2131: 155-171. | [42] | Forouharmehr A. Engineering an efficient poly-epitope vaccine against Toxoplasma gondii infection: a computational vaccinology study[J]. Microb Pathog, 2021, 152: 104646. | [43] | Parvizpour S,, Pourseif MM,, Razmara J, et al. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches[J]. Drug Discov Today, 2020, 25(6): 1034-1042. | [44] | Ip PP,, Nijman HW,, Daemen T. Epitope prediction assays combined with validation assays strongly narrows down putative cytotoxic T lymphocyte epitopes[J]. Vaccines (Basel), 2015, 3(2): 203-220. | [45] | Agallou M,, Athanasiou E,, Koutsoni O, et al. Experimental validation of multi-epitope peptides including promising MHC class Ⅰ- and Ⅱ-restricted epitopes of four known Leishmania infantum proteins[J]. Front Immunol, 2014, 5: 268. | [46] | Saha S,, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network[J]. Proteins, 2006, 65(1): 40-48. | [47] | Javadi Mamaghani A,, Fathollahi A,, Spotin A, et al. Candidate antigenic epitopes for vaccination and diagnosis strategies of Toxoplasma gondii infection: a review[J]. Microb Pathog, 2019, 137: 103788. | [48] | Sette A,, Fikes J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery[J]. Curr Opin Immunol, 2003, 15(4): 461-470. | [49] | Xu QQ,, Ma XJ,, Wang FK, et al. Design and construction of a chimeric multi-epitope gene as an epitope-vaccine strategy against ALV-J[J]. Protein Expr Purif, 2015, 106: 18-24. | [50] | Parmiani G,, Russo V,, Maccalli C, et al. Peptide-based vaccines for cancer therapy[J]. Hum Vaccin Immunother, 2014, 10(11): 3175-3178. | [51] | Li MD,, Kaminskas LM,, Marasini N. Recent advances in nano/microparticle-based oral vaccines[J]. J Pharm Investig, 2021, 51(4): 425-438. | [52] | El Bissati K,, Zhou Y,, Dasgupta D, et al. Effectiveness of a novel immunogenic nanoparticle platform for Toxoplasma peptide vaccine in HLA transgenic mice[J]. Vaccine, 2014, 32(26): 3243-3248. | [53] | Bissati KE,, Chentoufi AA,, Krishack PA, et al. Adjuvanted multi-epitope vaccines protect HLA-A*11: 01 transgenic mice against Toxoplasma gondii[J]. JCI Insight, 2016, 1(15): e85955. | [54] | Wang YH,, Wang M,, Wang GX, et al. Increased survival time in mice vaccinated with a branched lysine multiple antigenic peptide containing B- and T-cell epitopes from T. gondii antigens[J]. Vaccine, 2011, 29(47): 8619-8623. | [55] | Cao AP,, Liu Y,, Wang JJ, et al. Toxoplasma gondii: vaccination with a DNA vaccine encoding T- and B-cell epitopes of SAG1, GRA2, GRA7 and ROP16 elicits protection against acute toxoplasmosis in mice[J]. Vaccine, 2015, 33(48): 6757-6762. | [56] | Blanchard N,, Gonzalez F,, Schaeffer M, et al. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum[J]. Nat Immunol, 2008, 9(8): 937-944. | [57] | Sun XM,, Zou J,, Elashram Saeed AA, et al. DNA vaccination with a gene encoding Toxoplasma gondii GRA6 induces partially protection in BALB/c mice with an H-2Ld allele[J]. Parasit Vectors, 2011, 4: 213. | [58] | Foroutan M,, Ghaffarifar F,, Sharifi Z, et al. Vaccination with a novel multi-epitope ROP8 DNA vaccine against acute Toxoplasma gondii infection induces strong B and T cell responses in mice[J]. Comp Immunol Microbiol Infect Dis, 2020, 69: 101413. | [59] | Foroutan M,, Barati M,, Ghaffarifar F. Enhancing immune responses by a novel multi-epitope ROP8 DNA vaccine plus interleukin-12 plasmid as a genetic adjuvant against acute Toxoplasma gondii infection in BALB/c mice[J]. Microb Pathog, 2020, 147: 104435. | [60] | Khodadadi M,, Ghaffarifar F,, Dalimi A, et al. Immunogenicity of in-silico designed multi-epitope DNA vaccine encoding SAG1, SAG3 and SAG5 of Toxoplasma gondii adjuvanted with CpG-ODN against acute toxoplasmosis in BALB/c mice[J]. Acta Trop, 2021, 216: 105836. | [61] | Guo JJ,, Zhou AH Sun XH, et al. Immunogenicity of a virus-like-particle vaccine containing multiple antigenic epitopes of Toxoplasma gondii against acute and chronic toxoplasmosis in mice[J]. Front Immunol, 2019, 10: 592. |
|