[1] | Ebert D,, Fields PD. Host-parasite co-evolution and its genomic signature[J]. Nat Rev Genet, 2020, 21(12): 754-768. | [2] | Wang BF,, Li QY,, Wang JY, et al. Plasmodium infection inhibits tumor angiogenesis through effects on tumor-associated macrophages in a murine implanted hepatoma model[J]. Cell Commun Signal, 2020, 18(1): 157. | [3] | Seo SH,, Kim SG,, Shin JH, et al. Toxoplasma GRA16 inhibits NF-kB activation through PP2A-B55 upregulation in non-small-cell lung carcinoma cells[J]. Int J Mol Sci, 2020, 21(18): 6642. | [4] | Mu Y,, McManus DP,, Hou N, et al. Schistosome infection and schistosome-derived products as modulators for the prevention and alleviation of immunological disorders[J]. Front Immunol, 2021, 12: 619776. | [5] | Maizels RM,, McSorley HJ. Regulation of the host immune system by helminth parasites[J]. J Allergy Clin Immunol, 2016, 138(3): 666-675. | [6] | Chen QJ,, Yin JG. Research and perspectives in parasitology[J]. Chin J Parasitol Parasit Dis, 2007, 25(4): 342-348. (in Chinese) | [6] | ( 陈启军,, 尹继刚. 寄生虫学主要研究进展及发展方向[J]. 中国寄生虫学与寄生虫病杂志, 2007, 25(4): 342-348.) | [7] | Poulin R,, Bennett J,, de Angeli Dutra D, et al. Evolutionary signature of ancient parasite pressures, or the ghost of parasitism past[J]. Front Ecol Evol, 2020, 8: 195. | [8] | Mahanta A,, Ganguli P,, Barah P, et al. Integrative approaches to understand the mastery in manipulation of host cytokine networks by protozoan parasites with emphasis on Plasmodium and Leishmania species[J]. Front Immunol, 2018, 9: 296. | [9] | da Silva Vieira T,, Arango Duque G,, Ory K, et al. Leishmania braziliensis: strain-specific modulation of phagosome maturation[J]. Front Cell Infect Microbiol, 2019, 9: 319. | [10] | Yao CQ,, Donelson JE,, Wilson ME. The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function[J]. Mol Biochem Parasitol, 2003, 132(1): 1-16. | [11] | Brittingham A,, Morrison CJ,, McMaster WR, et al. Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis[J]. J Immunol, 1995, 155(6): 3102-3111. | [12] | Atayde VD,, Hassani K,, da Silva Lira Filho A, et al. Leishmania exosomes and other virulence factors: impact on innate immune response and macrophage functions[J]. Cell Immunol, 2016, 309: 7-18. | [13] | Silva LP,, Paciello MO,, Aviz Teixeira WP, et al. Immunogenicity of HLA-DR1 and HLA-A2 peptides derived from Leishmania major Gp63 in golden hamsters[J]. Parasite Immunol, 2020, 42(12): e12780. | [14] | Dong G,, Filho AL,, Olivier M. Modulation of host-pathogen communication by extracellular vesicles (EVs) of the protozoan parasite Leishmania[J]. Front Cell Infect Microbiol, 2019, 9: 100. | [15] | Soto-Serna LE,, Diupotex M,, Zamora-Chimal J, et al. Leishmania mexicana: novel insights of immune modulation through amastigote exosomes[J]. J Immunol Res, 2020, 2020: 8894549. | [16] | Karimi Kakh M,, Golchin M,, Kazemi Arababadi M, et al. Application of the Leishmania infantum 21-kDa recombinant protein for the development of an immunochromatographic test[J]. Parasite Immunol, 2020, 42(10): e12770. | [17] | Machado AS,, Ramos FF,, Santos TTO, et al. A new Leishmania hypothetical protein can be used for accurate serodiagnosis of canine and human visceral leishmaniasis and as a potential prognostic marker for human disease[J]. Exp Parasitol, 2020, 216: 107941. | [18] | Oliveira-da-Silva JA,, Machado AS,, Tavares GSV, et al. Biotechnological applications from a Leishmania amastigote-specific hypothetical protein in the canine and human visceral leishmaniasis[J]. Microb Pathog, 2020, 147: 104283. | [19] | Pirdel L,, Farajnia S. A non-pathogenic recombinant Leishmania expressing lipophosphoglycan 3 against experimental infection with Leishmania infantum[J]. Scand J Immunol, 2017, 86(1): 15-22. | [20] | Oliveira-da-Silva JA,, Lage DP,, Ramos FF, et al. Leishmania infantum pyridoxal kinase evaluated in a recombinant protein and DNA vaccine to protects against visceral leishmaniasis[J]. Mol Immunol, 2020, 124: 161-171. | [21] | Salehi M,, Taheri T,, Mohit E, et al. Recombinant Leishmania tarentolae encoding the HPV type 16 E7 gene in tumor mice model[J]. Immunotherapy, 2012, 4(11): 1107-1120. | [22] | Hosseinzadeh S,, Bolhassani A,, Rafati S, et al. A non-pathogenic live vector as an efficient delivery system in vaccine design for the prevention of HPV16 E7-overexpressing cancers[J]. Drug Deliv, 2013, 20(3/4): 190-198. | [23] | Caner A,, Sadğqova A, et al. Targeting of antitumor immune responses with live-attenuated Leishmania strains in breast cancer model[J]. Breast Cancer, 2020, 27(6): 1082-1095. | [24] | Sun H,, Li J,, Wang LJ, et al. Comparative proteomics analysis for elucidating the interaction between host cells and Toxoplasma gondii[J]. Front Cell Infect Microbiol, 2021, 11: 643001. | [25] | Clough B,, Frickel EM. The Toxoplasma parasitophorous vacuole: an evolving host-parasite frontier[J]. Trends Parasitol, 2017, 33(6): 473-488.[PubMed] | [26] | Etheridge RD,, Alaganan A,, Tang KL, et al. The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice[J]. Cell Host Microbe, 2014, 15(5): 537-550. | [27] | Mercer HL,, Snyder LM,, Doherty CM, et al. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity[J]. PLoS Pathog, 2020, 16(5): e1008572. | [28] | Yang CS,, Yuk JM,, Lee YH, et al. Toxoplasma gondii GRA7-induced TRAF6 activation contributes to host protective immunity[J]. Infect Immun, 2015, 84(1): 339-350. | [29] | Sana M,, Rashid M,, Rashid I, et al. Immune response against toxoplasmosis-some recent updates RH: Toxoplasma gondii immune response[J]. Int J Immunopathol Pharmacol, 2022, 36: 3946320221078436. | [30] | Su YJ,, Qiao X,, Wang PT, et al. Gene expression profiling of human lung adenocarcinoma of A549 cells induced by Toxoplasma virulence-related effector ROP16Ⅲ[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 473-479, 486. (in Chinese) | [30] | ( 苏雅静,, 乔霞,, 汪澎涛, 等. 弓形虫毒力相关效应分子ROP16Ⅲ诱导人肺腺癌A549细胞的基因表达谱[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 473-479, 486.) | [31] | Gatkowska JM,, Dziadek B,, Dziadek J, et al. Recombinant MAG1 protein of Toxoplasma gondii as a diagnostic antigen[J]. Pol J Microbiol, 2015, 64(1): 55-59. | [32] | Sudan V,, Tewari AK,, Singh H. Detection of antibodies against Toxoplasma gondii in Indian cattle by recombinant SAG2 enzyme-linked immunosorbent assay[J]. Acta Parasitol, 2019, 64(1): 148-151. | [33] | Wu MM,, An R,, Chen Y, et al. Vaccination with recombinant Toxoplasma gondii CDPK3 induces protective immunity against experimental toxoplasmosis[J]. Acta Trop, 2019, 199: 105148. | [34] | Sahar EA,, Can H iz SG, et al. Development of a hexavalent recombinant protein vaccine adjuvanted with Montanide ISA 50 V and determination of its protective efficacy against acute toxoplasmosis[J]. BMC Infect Dis, 2020, 20(1): 493. | [35] | Wang LJ,, Xiao T,, Xu C, et al. Protective immune response against Toxoplasma gondii elicited by a novel yeast-based vaccine with microneme protein 16[J]. Vaccine, 2018, 36(27): 3943-3948. | [36] | Czarnewski P,, Araújo ECB,, Oliveira MC, et al. Recombinant tg HSP70 immunization protects against Toxoplasma gondii brain cyst formation by enhancing inducible nitric oxide expression[J]. Front Cell Infect Microbiol, 2017, 7: 142. | [37] | Xu ZP,, Zhang XY,, Chang H, et al. Rescue of maternal immune activation-induced behavioral abnormalities in adult mouse offspring by pathogen-activated maternal Treg cells[J]. Nat Neurosci, 2021, 24(6): 818-830. | [38] | Neal LM,, Knoll LJ. Toxoplasma gondii profilin promotes recruitment of Ly6Chi CCR2+ inflammatory monocytes that can confer resistance to bacterial infection[J]. PLoS Pathog, 2014, 10(6): e1004203. | [39] | O’Brien KB,, Schultz-Cherry S,, Knoll LJ. Parasite-mediated upregulation of NK cell-derived gamma interferon protects against severe highly pathogenic H5N1 influenza virus infection[J]. J Virol, 2011, 85(17): 8680-8688. | [40] | Settles EW,, Moser LA,, Harris TH, et al. Toxoplasma gondii upregulates interleukin-12 to prevent Plasmodium berghei-induced experimental cerebral malaria[J]. Infect Immun, 2014, 82(3): 1343-1353. | [41] | Charest H,, Sedegah M,, Yap GS, et al. Recombinant attenuated Toxoplasma gondii expressing the Plasmodium yoelii circumsporozoite protein provides highly effective priming for CD8+ T cell-dependent protective immunity against malaria[J]. J Immunol, 2000, 165(4): 2084-2092. | [42] | Kim JS,, Lee D,, Kim D, et al. Toxoplasma gondii GRA8-derived peptide immunotherapy improves tumor targeting of colorectal cancer[J]. Oncotarget, 2020, 11(1): 62-73. | [43] | Li YL,, Poppoe F,, Chen J, et al. Macrophages polarized by expression of ToxoGRA15Ⅱ inhibit growth of hepatic carcinoma[J]. Front Immunol, 2017, 8: 137. | [44] | Su XZ,, Wu J. Zoonotic transmission and host switches of malaria parasites[J]. Zoonoses, 2021, 1(1): 11. | [45] | WHO. World malaria report 2021[J]. Geneva: WHO, 2021: 1-322. | [46] | Feng J,, Zhang L,, Xia ZG, et al. Malaria elimination in China: an eminent milestone in the anti-malaria campaign and challenges in the post-elimination stage[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 421-428. (in Chinese) | [46] | ( 丰俊,, 张丽,, 夏志贵, 等. 中国消除疟疾: 重要里程碑意义及消除后的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 421-428.) | [47] | Jensen AR,, Adams Y,, Hviid L. Cerebral Plasmodium falciparum malaria: the role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it[J]. Immunol Rev, 2020, 293(1): 230-252. | [48] | Turner L,, Lavstsen T,, Berger SS, et al. Severe malaria is associated with parasite binding to endothelial protein C receptor[J]. Nature, 2013, 498(7455): 502-505. | [49] | Toda H,, Diaz-Varela M,, Segui-Barber J, et al. Plasma-derived extracellular vesicles from Plasmodium vivax patients signal spleen fibroblasts via NF-kB facilitating parasite cytoadherence[J]. Nat Commun, 2020, 11(1): 2761. | [50] | Jiang LB,, Mu JB,, Zhang QF, et al. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum[J]. Nature, 2013, 499(7457): 223-227. | [51] | Atcheson E,, Reyes-Sandoval A. Protective efficacy of peptides from Plasmodium vivax circumsporozoite protein[J]. Vaccine, 2020, 38(27): 4346-4354. | [52] | Ragotte RJ,, Higgins MK,, Draper SJ. The RH5-CyRPA-ripr complex as a malaria vaccine target[J]. Trends Parasitol, 2020, 36(6): 545-559. | [53] | Posfai D,, Eubanks AL,, Keim AI, et al. Identification of Hsp90 inhibitors with anti-Plasmodium activity[J]. Antimicrob Agents Chemother, 2018, 62(4): e01799-17. | [54] | Pallavi R,, Roy N,, Nageshan RK, et al. Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug[J]. J Biol Chem, 2010, 285(49): 37964-37975. | [55] | Makumire S,, Zininga T,, Vahokoski J, et al. Biophysical analysis of Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop) reveals a monomer that is characterised by folded segments connected by flexible linkers[J]. PLoS One, 2020, 15(4): e0226657. | [56] | Ramdhave AS,, Patel D,, Ramya I, et al. Targeting heat shock protein 90 for malaria[J]. Mini Rev Med Chem, 2013, 13(13): 1903-1920. | [57] | Tabassum W,, Singh P,, Suthram N, et al. Synergistic action between PfHsp90 inhibitor and PfRad51 inhibitor induces elevated DNA damage sensitivity in the malaria parasite[J]. Antimicrob Agents Chemother, 2021, 65(9): e0045721 | [58] | Chen XP,, Qin L,, Hu W, et al. The mechanisms of action of Plasmodium infection against cancer[J]. Cell Commun Signal, 2021, 19(1): 74. | [59] | Salanti A,, Clausen TM,, Agerbæk MØ, et al. Targeting human cancer by a glycosaminoglycan binding malaria protein[J]. Cancer Cell, 2015, 28(4): 500-514. | [60] | Ryan SM,, Eichenberger RM,, Ruscher R, et al. Harnessing helminth-driven immunoregulation in the search for novel therapeutic modalities[J]. PLoS Pathog, 2020, 16(5): e1008508. | [61] | Wu XM,, Dai Y,, Cao J. Progress of research on host immune responses induced by hookworm infection and its potential therapeutic values[J]. Chin J Schisto Control, 2019, 31(5): 560-564. (in Chinese) | [61] | ( 吴小珉,, 戴洋,, 曹俊. 钩虫感染诱导宿主免疫反应及其潜在治疗价值研究进展[J]. 中国血吸虫病防治杂志, 2019, 31(5): 560-564.) | [62] | Khudhair Z,, Alhallaf R,, Eichenberger RM, et al. Gastrointestinal helminth infection improves insulin sensitivity, decreases systemic inflammation, and alters the composition of gut microbiota in distinct mouse models of type 2 diabetes[J]. Front Endocrinol (Lausanne), 2021, 11: 606530. | [63] | Eichenberger RM,, Ryan S,, Jones L, et al. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice[J]. Front Immunol, 2018, 9: 850. | [64] | Buitrago G,, Pickering D,, Ruscher R, et al. A netrin domain-containing protein secreted by the human hookworm Necator americanus protects against CD4 T cell transfer colitis[J]. Transl Res, 2021, 232: 88-102. | [65] | Navarro S,, Pickering DA,, Ferreira IB, et al. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma[J]. Sci Transl Med, 2016, 8(362): 362ra143. | [66] | Wangchuk P,, Shepherd C,, Constantinoiu C, et al. Hookworm-derived metabolites suppress pathology in a mouse model of colitis and inhibit secretion of key inflammatory cytokines in primary human leukocytes[J]. Infect Immun, 2019, 87(4): e00851-18. | [67] | Smallwood TB,, Navarro S,, Cristofori-Armstrong B, et al. Synthetic hookworm-derived peptides are potent modulators of primary human immune cell function that protect against experimental colitis in vivo[J]. J Biol Chem, 2021, 297(1): 100834. | [68] | Liu R,, Wen LY. New progress in basic and clinical research of advanced schistosomiasis[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 429-436. (in Chinese) | [68] | ( 刘蓉,, 闻礼永. 晚期血吸虫病基础和临床研究新进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 429-436.) | [69] | Zhang LJ,, Xu ZM,, Yang F, et al. Endemic status of schistosomiasis in People’s Republic of China in 2020[J]. Chin J Schisto Control, 2021, 33(3): 225-233. (in Chinese) | [69] | ( 张利娟,, 徐志敏,, 杨帆, 等. 2020年全国血吸虫病疫情通报[J]. 中国血吸虫病防治杂志, 2021, 33(3): 225-233.) | [70] | Wu CY,, Chen Q,, Fang Y, et al. Schistosoma japonicum egg specific protein SjE16.7 recruits neutrophils and induces inflammatory hepatic granuloma initiation[J]. PLoS Negl Trop Dis, 2014, 8(2): e2703. | [71] | Fang Y,, Wu CY,, Chen Q, et al. SjE16.7 activates macrophages and promotes Schistosoma japonicum egg-induced granuloma development[J]. Acta Trop, 2015, 149: 49-58. | [72] | Takaki KK,, Roca FJ,, Schramm G, et al. Tumor necrosis factor and Schistosoma mansoni egg antigen Omega-1 shape distinct aspects of the early egg-induced granulomatous response[J]. PLoS Negl Trop Dis, 2021, 15(1): e0008814. | [73] | Hagen J,, Young ND,, Every AL, et al. Omega-1 knockdown in Schistosoma mansoni eggs by lentivirus transduction reduces granuloma size in vivo[J]. Nat Commun, 2014, 5: 5375. | [74] | Zhu JF,, Xu ZP,, Chen XJ, et al. Parasitic antigens alter macrophage polarization during Schistosoma japonicum infection in mice[J]. Parasit Vectors, 2014, 7: 122. | [75] | Xu ZP,, Xu L,, Li W, et al. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection[J]. Nat Commun, 2017, 8: 16035. | [76] | Chen XJ,, Yang XW,, Li Y, et al. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection[J]. PLoS Pathog, 2014, 10(5): e1004097. | [77] | Chen XJ,, Xu ZP,, Wei C, et al. Follicular helper T cells recruit eosinophils into host liver by producing CXCL12 during Schistosoma japonicum infection[J]. J Cell Mol Med, 2020, 24(4): 2566-2572. | [78] | Shen J,, Wang LF,, Peng M, et al. Recombinant Sj16 protein with novel activity alleviates hepatic granulomatous inflammation and fibrosis induced by Schistosoma japonicum associated with M2 macrophages in a mouse model[J]. Parasit Vectors, 2019, 12(1): 457. | [79] | Zhang WY,, Luo XF,, Zhang F, et al. SjTat-TPI facilitates adaptive T-cell responses and reduces hepatic pathology during Schistosoma japonicum infection in BALB/c mice[J]. Parasit Vectors, 2015, 8: 664. | [80] | Osada Y,, Shimizu S,, Kumagai T, et al. Schistosoma mansoni infection reduces severity of collagen-induced arthritis via down-regulation of pro-inflammatory mediators[J]. Int J Parasitol, 2009, 39(4): 457-464. | [81] | He YK,, Li J,, Zhuang WJ, et al. The inhibitory effect against collagen-induced arthritis by Schistosoma japonicum infection is infection stage-dependent[J]. BMC Immunol, 2010, 11: 28. | [82] | Osada Y,, Horie Y,, Nakae S, et al. STAT6 and IL-10 are required for the anti-arthritic effects of Schistosoma mansoni via different mechanisms[J]. Clin Exp Immunol, 2019, 195(1): 109-120. | [83] | Eissa MM,, Mostafa DK,, Ghazy AA, et al. Anti-arthritic activity of Schistosoma mansoni and Trichinella spiralis derived-antigens in adjuvant arthritis in rats: role of FOXP3+ Treg cells[J]. PLoS One, 2016, 11(11): e0165916. | [84] | Liu F,, Cheng WS,, Pappoe F, et al. Schistosoma japonicum cystatin attenuates murine collagen-induced arthritis[J]. Parasitol Res, 2016, 115(10): 3795-3806. | [85] | Sun XL,, Zhang LB,, Wang JX, et al. Schistosoma japonicum protein SjP40 inhibits TGF-β1-induced activation of hepatic stellate cells[J]. Parasitol Res, 2015, 114(11): 4251-4257. | [86] | Zhou XH,, Wu JY,, Huang XQ, et al. Identification and characterization of Schistosoma japonicum Sjp40, a potential antigen candidate for the early diagnosis of schistosomiasis[J]. Diagn Microbiol Infect Dis, 2010, 67(4): 337-345. | [87] | Ren JL,, Hu LZ,, Yang J, et al. Novel T-cell epitopes on Schistosoma japonicum SjP40 protein and their preventive effect on allergic asthma in mice[J]. Eur J Immunol, 2016, 46(5): 1203-1213. | [88] | Ni YY,, Xu ZP,, Li C, et al. Therapeutic inhibition of miR-802 protects against obesity through AMPK-mediated regulation of hepatic lipid metabolism[J]. Theranostics, 2021, 11(3): 1079-1099. | [89] | Ma YB,, Wei C,, Qi X, et al. Schistosoma japonicum-derived peptide SJMHE1 promotes peripheral nerve repair through a macrophage-dependent mechanism[J]. Am J Transl Res, 2021, 13(3): 1290-1306. | [90] | Zhang WZ,, Li L,, Zheng Y, et al. Schistosoma japonicum peptide SJMHE1 suppresses airway inflammation of allergic asthma in mice[J]. J Cell Mol Med, 2019, 23(11): 7819-7829. | [91] | Shan WQ,, Zhang WZ,, Xue F, et al. Schistosoma japonicum peptide SJMHE1 inhibits acute and chronic colitis induced by dextran sulfate sodium in mice[J]. Parasit Vectors, 2021, 14(1): 455. | [92] | Zhang S,, Gong TT,, Liu FH, et al. Global, regional, and national burden of endometrial cancer, 1990—2017: results from the global burden of disease study, 2017[J]. Front Oncol, 2019, 9: 1440. | [93] | Arora N,, Prasad A. Taenia solium proteins: a beautiful kaleidoscope of pro and anti-inflammatory antigens[J]. Expert Rev Proteomics, 2020, 17(7/8): 609-622. | [94] | Ranasinghe SL,, Boyle GM,, Fischer K, et al. Kunitz type protease inhibitor EgKI-1 from the canine tapeworm Echinococcus granulosus as a promising therapeutic against breast cancer[J]. PLoS One, 2018, 13(8): e0200433. | [95] | Ranasinghe SL,, Rivera V,, Boyle GM, et al. Kunitz type protease inhibitor from the canine tapeworm as a potential therapeutic for melanoma[J]. Sci Rep, 2019, 9(1): 16207. | [96] | Callejas BE,, Mendoza-Rodríguez MG,, Villamar-Cruz O, et al. Helminth-derived molecules inhibit colitis-associated colon cancer development through NF-κB and STAT3 regulation[J]. Int J Cancer, 2019, 145(11): 3126-3139. | [97] | Fan XM,, Zhou BY. Research advances on the relationship between cestode excretory/secretory products and host immune response[J]. Chin J Parasitol Parasit Dis, 2020, 38(1): 128-133. (in Chinese) | [97] | ( 范贤敏,, 周必英. 绦虫排泄分泌物与宿主免疫效应的相关研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(1): 128-133.) | [98] | Liu CC,, Fan HN,, Ma L, et al. Advances in acetylcholinesterase and nicotinic acetylcholine receptors as potential drug targets in Echinococcus and other parasitic tapeworms[J]. Chin J Zoonoses, 2019, 35(12): 1122-1129. (in Chinese) | [98] | ( 刘川川,, 樊海宁,, 马兰, 等. 棘球绦虫和其它寄生性绦虫乙酰胆碱酯酶和烟碱型乙酰胆碱受体作为潜在药物靶点的研究进展[J]. 中国人兽共患病学报, 2019, 35(12): 1122-1129.) |
|