[1] | Dubey JP. The history of Toxoplasma gondii: the first 100 years[J]. J Eukaryot Microbiol, 2008, 55(6):467-475. | [2] | Montoya J, Liesenfeld O. Toxoplasmosis[J]. Lancet, 2004, 363(9425):1965-1976. | [3] | Hakimi MA, Olias P, Sibley LD. Toxoplasma effectors targeting host signaling and transcription[J]. Clin Microbiol Rev, 2017, 30(3):615-645. | [4] | Xia J, Peng HJ. Research advances on Toxoplasma gondii virulence mediating factors[J]. Chin J Parasitol Parasit Dis, 2015, 33(4):297-300. (in Chinese) | [4] | (夏菁, 彭鸿娟. 刚地弓形虫毒力调节因子研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(4):297-300.) | [5] | Behrends C, Harper JW. Constructing and decoding unconventional ubiquitin chains[J]. Nat Struct Mol Biol, 2011, 18(5):520-528. | [6] | Grabbe C, Husnjak K, Dikic I. The spatial and temporal organization of ubiquitin networks[J]. Nat Rev Mol Cell Biol, 2011, 12(5):295-307. | [7] | Yao LJ, Peng HJ. Research advances on the inhibition of interferon-γ-dependent cellular immunity by Toxoplasma gondii[J]. Chin J Parasitol Parasit Dis, 2017, 35(5):503-508. (in Chinese) | [7] | (姚礼捷, 彭鸿娟. 弓形虫抑制γ干扰素依赖的宿主细胞免疫的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(5):503-508.) | [8] | Choi J, Park S, Biering SB, et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy[J]. Immunity, 2014, 40(6):924-935. | [9] | Haldar AK, Foltz C, Finethy R, et al. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins[J]. Proc Natl Acad Sci USA, 2015, 112(41):E5628-E5637. | [10] | Steinfeldt T, Könen-Waisman S, Tong L, et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii[J]. PLoS Biol, 2010, 8(12):e1000576. | [11] | Lee Y, Sasai MW, Ma JS, et al. p62 plays a specific role in interferon-γ-induced presentation of a Toxoplasma vacuolar antigen[J]. Cell Rep, 2015, 13(2):223-233. | [12] | Selleck EM, Orchard RC, Lassen KG, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ-activated human cells[J]. mBio, 2015, 6(5):e01157-e01172. | [13] | Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions[J]. Cell Mol Immunol, 2016, 13(5):560-576. | [14] | Mesquita FS, Thomas M, Sachse M, et al. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates[J]. PLoS Pathog, 2012, 8(6):e1002743. | [15] | Fiskin E, Bionda T, Dikic I, et al. Global analysis of host and bacterial ubiquitinome in response to Salmonella typhimurium infection[J]. Mol Cell, 2016, 62(6):967-981. | [16] | Nelson MM, Jones AR, Carmen JC, et al. Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii[J]. Infect Immun, 2008, 76(2):828-844. | [17] | He JJ, Ma J, Wang JL, et al. iTRAQ-based quantitative proteomics analysis identifies host pathways modulated during Toxoplasma gondii infection in swine[J]. Microorganisms, 2020, 8(4):E518. | [18] | Delorme-Walker V, Abrivard M, Lagal V, et al. Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion[J]. J Cell Sci, 2012, 125(18):4333-4342. | [19] | Sweeney KR, Morrissette NS, LaChapelle S, et al. Host cell invasion by Toxoplasma gondii is temporally regulated by the host microtubule cytoskeleton[J]. Eukaryot Cell, 2010, 9(11):1680-1689. | [20] | He C, Kong L, Zhou LJ, et al. Host cell vimentin restrains Toxoplasma gondii invasion and phosphorylation of vimentin is partially regulated by interaction with TgROP18[J]. Int J Biol Sci, 2017, 13(9):1126-1137. | [21] | Na RH, Zhu GH, Luo JX, et al. Enzymatically active Rho and Rac small-GTPases are involved in the establishment of the vacuolar membrane after Toxoplasma gondii invasion of host cells[J]. BMC Microbiol, 2013, 13:125. | [22] | Wei HX, Zhou LJ, Wu SZ, et al. Host cell Rac1 GTPase facilitates Toxoplasma gondii invasion[J]. Sci Chin Life Sci, 2020, 63(4):610-612. | [23] | Chen J, Sathiyamoorthy K, Zhang XM, et al. Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus[J]. Nat Microbiol, 2018, 3(2):172-180. | [24] | Zhang H, Li Y, Wang HB, et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry[J]. Nat Microbiol, 2018, 3(2):1-8. | [25] | Cook JH, Ueno N, Lodoen MB. Toxoplasma gondii disrupts β1 integrin signaling and focal adhesion formation during monocyte hypermotility[J]. J Biol Chem, 2018, 293(9):3374-3385. | [26] | Ramírez-Flores CJ, Cruz-Mirón R, Lagunas-Cortés N, et al. Toxoplasma gondii excreted/secreted proteases disrupt intercellular junction proteins in epithelial cell monolayers to facilitate tachyzoites paracellular migration[J]. Cell Microbiol, 2021, 23(3):e13283. | [27] | Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases[J]. Nat Rev Mol Cell Biol, 2005, 6(1):9-20. | [28] | Cui DR, Xiong XF, Zhao YC. Cullin-RING ligases in regulation of autophagy[J]. Cell Div, 2016, 11:8. | [29] | Wan P, Zhang Q, Liu WY, et al. Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation[J]. FASEB J, 2019, 33(4):5793-5807. | [30] | Tanaka K, Kawakami T, Tateishi K, et al. Control of IkappaBalpha proteolysis by the ubiquitin-proteasome pathway[J]. Biochimie, 2001, 83(3/4):351-356. | [31] | Pan ZQ, Kentsis A, Dias DC, et al. Nedd8 on cullin: building an expressway to protein destruction[J]. Oncogene, 2004, 23(11):1985-1997. |
|