[1] | Zhang LJ, He JY, Yang F, et al. Progress of schistosomiasis control in People’s Republic of China in 2022[J]. Chin J Schisto Control, 2023, 9(3): 217-224, 250. (in Chinese) | | (张利娟, 何君逸, 杨帆, 等. 2022年全国血吸虫病防治进展[J]. 中国血吸虫病防治杂志, 2023, 9(3): 217-224, 250.) | [2] | Zhang SY, Xing YT, Yuan X, et al. Affect of niclosamide on the oxidative phosphorylation of Biomphalaria glabrata[J]. Chin J Parasitol Parasit Dis, 2022, 40(1): 61-67. (in Chinese) | | (张苏阳, 邢云天, 袁轩, 等. 氯硝柳胺对光滑双脐螺氧化磷酸化的影响[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 61-67.) | [3] | Wang F, Dai JR. Assessment studies of niclosamide’s toxicological safety: an overview[J]. Chin J Zoonoses, 2013, 29(1): 86-90. (in Chinese) | | (王飞, 戴建荣. 氯硝柳胺的毒理学安全性评价研究概况[J]. 中国人兽共患病学报, 2013, 29(1): 86-90.) | [4] | Cao ZG, Wang TP, Zhang SQ, et al. Experimental study on the resistance of Oncomelania snails to niclosamide[J]. J Pathog Biol, 2012, 7(5): 352-353, 376. (in Chinese) | | (操治国, 汪天平, 张世清, 等. 钉螺对氯硝柳胺抗药性的实验研究[J]. 中国病原生物学杂志, 2012, 7(5): 352-353, 376.) | [5] | Huang BS, Li MY. Research progress of Oncomelania hupensis herbicides from plants[J]. J Chin Med Mater, 2012, 35(6): 1010-1013. (in Chinese) | | (黄炳生, 李明亚. 植物源灭钉螺药的研究进展[J]. 中药材, 2012, 35(6): 1010-1013.) | [6] | McDonald AE, Vanlerberghe GC, Staples JF. Alternative oxidase in animals: unique characteristics and taxonomic distribution[J]. J Exp Biol, 2009, 212(Pt 16): 2627-2634. | [7] | Vanlerberghe GC, McIntosh L. Alternative oxidase: fom gene to function[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 703-734. | [8] | Xiong T, Zhao QP, Xu XJ, et al. Morphological and enzymatical observations in Oncomelania hupensis after molluscicide treatment: implication for future molluscicide development[J]. Parasitol Res, 2016, 115(11): 4139-4152. | [9] | Arnholdt-Schmitt B, Costa JH, de Melo DF. AOX: a functional marker for efficient cell reprogramming under stress?[J]. Trends Plant Sci, 2006, 11(6): 281-287. | [10] | Xu S, Zhang YW, Habib MR, et al. Inhibition of alternative oxidase disrupts the development and oviposition of Biomphalaria glabratasnails[J]. Parasit Vectors, 2023, 16(1): 73. | [11] | Sankar TV, Saharay M, Santhosh D, et al. Structural and biophysical characterization of purified recombinant Arabidopsis thaliana’s alternative oxidase 1A (rAtAOX1A): interaction with inhibitor(s) and activator[J]. Front Plant Sci, 2022, 13: 871208. | [12] | Luo KS, He YC, Xu LC, et al. Progress in researches on active constituents and molluscicidal activity of Sapium sebiferum[J]. Chin J Schisto Control, 2013, 25(5): 538-540. (in Chinese) | | (罗坤水, 贺义昌, 徐林初, 等. 乌桕活性成分及其抑螺研究进展[J]. 中国血吸虫病防治杂志, 2013, 25(5): 538-540.) | [13] | Xiong T, Guo JL, Lu FG, et al. Screening of traditional Chinese medicine-derived snail control drug targets based on network pharmacology[J]. Chin J Schisto Control, 2022, 8(6): 588-597. (in Chinese) | | (熊涛, 郭锦璐, 卢芳国, 等. 基于网络药理学的中药来源灭螺药物相关靶点筛选[J]. 中国血吸虫病防治杂志, 2022, 8(6): 588-597.) | [14] | Nose M, Koide T, Morikawa K, et al. Formation of reactive oxygen intermediates might be involved in the trypanocidal activity of gallic acid[J]. Biol Pharm Bull, 1998, 21(6): 583-587. | [15] | Evans DA, Brightman CJ, Holland MF. Salicylhydroxamic-acid/glycerol in experimental trypanosomiasis[J]. Lancet, 1977, 2(8041): 769. | [16] | Fang J, Beattie DS. Alternative oxidase present in procyclic Trypanosoma brucei may act to lower the mitochondrial production of superoxide[J]. Arch Biochem Biophys, 2003, 414(2): 294-302. | [17] | Ebiloma GU, Balogun EO, Cueto-Díaz EJ, et al. Alternative oxidase inhibitors: mitochondrion-targeting as a strategy for new drugs against pathogenic parasites and fungi[J]. Med Res Rev, 2019, 39(5): 1553-1602. | [18] | Ogawa K, Nakane Y. Enzyme histochemical techniques[M]. Shanghai: Shanghai Medical University Press, 1989: 41-43. (in Chinese) | | (日小川和郎, 日中根一穗. 酶组织细胞化学技术[M]. 上海: 上海医科大学出版社, 1989: 41-43.) | [19] | Chayen J, Butcher RG, Bitensky L. Practical histochemistry[M]. London: John Wiley & Sons, 1974: 70-73. | [20] | Jiang N, Li SZ, Zhang YW, et al. The identification of alternative oxidase in intermediate host snails of Schistosoma and its potential role in protecting Oncomelania hupensis against niclosamide-induced stress[J]. Parasit Vectors, 2022, 15(1): 97. | [21] | Blier PU, Breton S, Desrosiers V, et al. Functional conservatism in mitochondrial evolution: insight from hybridization of Arctic and brook charrs[J]. J Exp Zool B Mol Dev Evol, 2006, 306(5): 425-432. | [22] | Xiong T, Jiang N, Xu S, et al. Metabolic profiles of Oncomelania hupensis after molluscicidal treatment: carbohydrate metabolism targeted and energy deficiency[J]. Acta Trop, 2020, 210: 105580. | [23] | Nogueira L, Mello DF, Trevisan R, et al. Hypoxia effects on oxidative stress and immunocompetence biomarkers in the mussel Perna perna (Mytilidae, Bivalvia)[J]. Mar Environ Res, 2017, 126: 109-115. | [24] | Yan B, Liu XB, Zhao XG, et al. Single and joint oxidative stress of cadmium and phenanthrene on the Bivalve Anadara subcrenata[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2020, 55(4): 448-456. | [25] | Yan J, Hu T, Lei ZL. The endemic situation and challenges of major parasitic diseases in China[J]. Chin J Parasitol Parasit Dis, 2015, 33(6): 412-417. (in Chinese) | | (严俊, 胡桃, 雷正龙. 全国重点寄生虫病的防控形势与挑战[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(6): 412-417.) | [26] | Lei ZL, Wang LY. Control situation and primary task of key parasitic diseases in China[J]. Chin J Parasitol Parasit Dis, 2012, 30(1): 1-5. (in Chinese) | | (雷正龙, 王立英. 全国重点寄生虫病防治形势与主要任务[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(1): 1-5.) | [27] | Zheng J. Achievements and challenges in schistosomiasis control in China[J]. Chin J Parasitol Parasit Dis, 2009, 27(5): 398-401. (in Chinese) | | (郑江. 我国血吸虫病防治的成就及面临的问题[J]. 中国寄生虫学与寄生虫病杂志, 2009, 27(5): 398-401.) | [28] | Feng JX, Gong YF, Luo ZW, et al. Scientific basis of strategies for schistosomiasis control and prospect of the 14th Five-Year Plan in China[J]. Chin J Parasitol Parasit Dis, 2022, 40(4): 428-435. (in Chinese) | | (冯家鑫, 公衍峰, 罗卓韦, 等. 我国血吸虫病防治策略的科学基础与 “十四五” 展望[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 428-435.) |
|