CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2023, Vol. 41 ›› Issue (1): 92-97.doi: 10.12140/j.issn.1000-7423.2023.01.014
• REVIEWS • Previous Articles Next Articles
JIANG Tiange1(), ZENG Wenbo2, LI Zhongqiu2, ZHANG Yi1,2,*(
)
Received:
2022-04-27
Revised:
2022-06-29
Online:
2023-02-28
Published:
2023-02-24
Contact:
* E-mail: Supported by:
CLC Number:
JIANG Tiange, ZENG Wenbo, LI Zhongqiu, ZHANG Yi. Research advances in the regulatory role of non-coding RNA in leishmaniasis[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 92-97.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2023.01.014
[1] |
Naderer T, McConville MJ. Intracellular growth and pathogenesis of Leishmania parasites[J]. Essays Biochem, 2011, 51: 81-95.
doi: 10.1042/bse0510081 pmid: 22023443 |
[2] |
Tamgue O, Mezajou CF, Ngongang NN, et al. Non-coding RNAs in the etiology and control of major and neglected human tropical diseases[J]. Front Immunol, 2021, 12: 703936.
doi: 10.3389/fimmu.2021.703936 |
[3] | Li S, Wu WP. Changes of risk factors and control progress of leishmaniasis[J]. Endem Dis Bull, 2006, 21(1): 95-97, 100. (in Chinese) |
(李森, 伍卫平. 利什曼病的危险因素变迁与控制进展[J]. 地方病通报, 2006, 21(1): 95-97, 100.) | |
[4] | Chen LL, Feng SS, Fan ZS, et al. Progress in non-coding RNA research[J]. Sci SinVitae, 2019, 49(12): 1573-1605. (in Chinese) |
(陈玲玲, 冯珊珊, 范祖森, 等. 非编码RNA研究进展[J]. 中国科学: 生命科学, 2019, 49(12): 1573-1605.) | |
[5] |
Singh RP, Massachi I, Manickavel S, et al. The role of miRNA in inflammation and autoimmunity[J]. Autoimmun Rev, 2013, 12(12): 1160-1165.
doi: 10.1016/j.autrev.2013.07.003 pmid: 23860189 |
[6] | Goswami A, Mukherjee K, Mazumder A, et al. MicroRNA exporter HuR clears the internalized pathogens by promoting pro-inflammatory response in infected macrophages[J]. EMBO Mol Med, 2020, 12(3): e11011. |
[7] |
Muxel SM, Laranjeira-Silva MF, Zampieri RA, et al. Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism[J]. Sci Rep, 2017, 7: 44141.
doi: 10.1038/srep44141 |
[8] |
Fernandes JCR, Aoki JI, Maia Acuña S, et al. Melatonin and Leishmania amazonensis infection altered miR-294, miR-30e, and miR-302d impacting on Tnf, Mcp-1, and Nos 2 expression[J]. Front Cell Infect Microbiol, 2019, 9: 60.
doi: 10.3389/fcimb.2019.00060 |
[9] | Varikuti S, Natarajan G, Volpedo G, et al. MicroRNA 155 contributes to host immunity against Leishmania donovani but is not essential for resolution of infection[J]. Infect Immun, 2019, 87(8): e00307-19. |
[10] |
Hamidi F, Mohammadi-Yeganeh S, Haji Molla Hoseini M, et al. Inhibition of anti-inflammatory cytokines, IL-10 and TGF-β, in Leishmania major infected macrophage by miRNAs: a new therapeutic modality against leishmaniasis[J]. Microb Pathog, 2021, 153: 104777.
doi: 10.1016/j.micpath.2021.104777 |
[11] |
Oghumu S, Stock JC, Varikuti S, et al. Transgenic expression of CXCR3 on T cells enhances susceptibility to cutaneous Leishmania major infection by inhibiting monocyte maturation and promoting a Th2 response[J]. Infect Immun, 2015, 83(1): 67-76.
doi: 10.1128/IAI.02540-14 pmid: 25312956 |
[12] |
Varikuti S, Verma C, Natarajan G, et al. MicroRNA155 plays a critical role in the pathogenesis of cutaneous Leishmania major infection by promoting a Th2 response and attenuating dendritic cell activity[J]. Am J Pathol, 2021, 191(5): 809-816.
doi: 10.1016/j.ajpath.2021.01.012 pmid: 33539779 |
[13] |
Varikuti S, Verma C, Holcomb E, et al. MicroRNA-21 deficiency promotes the early Th1 immune response and resistance toward visceral leishmaniasis[J]. J Immunol, 2021, 207(5): 1322-1332.
doi: 10.4049/jimmunol.2001099 pmid: 34341171 |
[14] |
Melo LM, Bragato JP, Venturin GL, et al. Induction of miR-21 impairs the anti-Leishmania response through inhibition of IL-12 in canine splenic leukocytes[J]. PLoS One, 2019, 14(12): e0226192.
doi: 10.1371/journal.pone.0226192 |
[15] |
Beattie L, Peltan A, Maroof A, et al. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells[J]. PLoS Pathog, 2010, 6(3): e1000805.
doi: 10.1371/journal.ppat.1000805 |
[16] |
Momen-Heravi F, Bala SS, Kodys K, et al. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS[J]. Sci Rep, 2015, 5: 9991.
doi: 10.1038/srep09991 pmid: 25973575 |
[17] | Ganguly S, Ghoshal B, Banerji I, et al. Leishmania survives by exporting miR-146a from infected to resident cells to subjugate inflammation[J]. Life Sci Alliance, 2022, 5(6): e202101229. |
[18] |
Ponte-Sucre A, Gamarro F, Dujardin JC, et al. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge[J]. PLoS Negl Trop Dis, 2017, 11(12): e0006052.
doi: 10.1371/journal.pntd.0006052 |
[19] |
Mukherjee B, Paul J, Mukherjee S, et al. Antimony-resistant Leishmania donovani exploits miR-466i to deactivate host MyD88 for regulating IL-10/IL-12 levels during early hours of infection[J]. J Immunol, 2015, 195(6): 2731-2742.
doi: 10.4049/jimmunol.1402585 |
[20] | Wang HK, Han DS. Toll-like receptors signaling and regulation of immune response[J]. Prog Biochem Biophys, 2006, 33(9): 820-827. (in Chinese) |
(王海坤, 韩代书. Toll样受体(TLRs)的信号转导与免疫调节[J]. 生物化学与生物物理进展, 2006, 33(9): 820-827.) | |
[21] |
Virtue A, Wang H, Yang XF. MicroRNAs and toll-like receptor/interleukin-1 receptor signaling[J]. J Hematol Oncol, 2012, 5: 66.
doi: 10.1186/1756-8722-5-66 |
[22] |
Muxel SM, Acuña SM, Aoki JI, et al. Toll-like receptor and miRNA-let-7e expression alter the inflammatory response in Leishmania amazonensis-infected macrophages[J]. Front Immunol, 2018, 9: 2792.
doi: 10.3389/fimmu.2018.02792 |
[23] |
Souza MA, Ramos-Sanchez EM, Muxel SM, et al. MiR-548d-3p alters parasite growth and inflammation in Leishmania (viannia) braziliensis infection[J]. Front Cell Infect Microbiol, 2021, 11: 687647.
doi: 10.3389/fcimb.2021.687647 |
[24] |
Ramos-Sanchez EM, Reis LC, Souza MA, et al. MiR-548d-3p is up-regulated in human visceral leishmaniasis and suppresses parasite growth in macrophages[J]. Front Cell Infect Microbiol, 2022, 12: 826039.
doi: 10.3389/fcimb.2022.826039 |
[25] |
Nunes S, Silva IB, Ampuero MR, et al. Integrated analysis reveals that miR-193b, miR-671, and TREM-1 correlate with a good response to treatment of human localized cutaneous leishmaniasis caused by Leishmania braziliensis[J]. Front Immunol, 2018, 9: 640.
doi: 10.3389/fimmu.2018.00640 pmid: 29670621 |
[26] |
Suttles J, Stout R D. Macrophage CD40 signaling: a pivotal regulator of disease protection and pathogenesis[J]. Semin Immunol, 2009, 21(5): 257-264.
doi: 10.1016/j.smim.2009.05.011 pmid: 19540774 |
[27] | Zheng JB, Yang Y, Chen X. Research progress on the decisive role of TNFR2 in the activation, proliferative expansion, and function of CD4+Foxp3+Treg[J]. Curr Immunol, 2022, 42(1): 1-6, 71. (in Chinese) |
(郑静彬, 杨阳, 陈新. TNFR2对CD4+Foxp3+Treg的活化、增殖及功能影响的研究进展[J]. 现代免疫学, 2022, 42(1): 1-6, 71.) | |
[28] | Acuña SM, Zanatta JM, de Almeida Bento C, et al. MiR-294 and miR-410 negatively regulate Tnfa, arginine transporter Cat 1/2, and Nos 2 mRNAs in murine macrophages infected with Leishmania amazonensis[J]. Noncoding RNA, 2022, 8(1): 17. |
[29] | Kumar A, Das S, Mandal A, et al. Leishmania infection activates host mTOR for its survival by M2 macrophage polarization[J]. Parasite Immunol, 2018, 40(11): e12586. |
[30] |
Misra S, Tripathi MK, Chaudhuri G. Down-regulation of 7SL RNA expression and impairment of vesicular protein transport pathways by Leishmania infection of macrophages[J]. J Biol Chem, 2005, 280(32): 29364-29373.
doi: 10.1074/jbc.M504162200 |
[31] |
Essandoh K, Li YT, Huo JZ, et al. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response[J]. Shock, 2016, 46(2): 122-131.
doi: 10.1097/SHK.0000000000000604 pmid: 26954942 |
[32] |
He XX, Gong PT, Wei ZK, et al. Peroxisome proliferator-activated receptor-γ-mediated polarization of macrophages in Neospora caninum infection[J]. Exp Parasitol, 2017, 178: 37-44.
doi: 10.1016/j.exppara.2017.05.002 |
[33] |
Silva RLL, Santos MB, Almeida PLS, et al. sCD163 levels as a biomarker of disease severity in leprosy and visceral leishmaniasis[J]. PLoS Negl Trop Dis, 2017, 11(3): e0005486.
doi: 10.1371/journal.pntd.0005486 |
[34] |
Das S, Mukherjee S, Ali N. Super enhancer-mediated transcription of miR146a-5p drives M2 polarization during Leishmania donovani infection[J]. PLoS Pathog, 2021, 17(2): e1009343.
doi: 10.1371/journal.ppat.1009343 |
[35] |
Diotallevi A, De Santi M, Buffi G, et al. Leishmania infection induces microRNA hsa-miR-346 in human cell line-derived macrophages[J]. Front Microbiol, 2018, 9: 1019.
doi: 10.3389/fmicb.2018.01019 pmid: 29867904 |
[36] |
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity[J]. Nat Rev Immunol, 2013, 13(10): 722-737.
doi: 10.1038/nri3532 pmid: 24064518 |
[37] |
Zhao Y, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation[J]. Nat Rev Mol Cell Biol, 2021, 22(11): 733-750.
doi: 10.1038/s41580-021-00392-4 |
[38] |
Frank B, Marcu A, de Oliveira Almeida Petersen AL, et al. Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210[J]. Parasit Vectors, 2015, 8: 404.
doi: 10.1186/s13071-015-0974-3 |
[39] |
Singh AK, Pandey RK, Shaha C, et al. MicroRNA expression profiling of Leishmania donovani-infected host cells uncovers the regulatory role of MIR30A-3p in host autophagy[J]. Autophagy, 2016, 12(10): 1817-1831.
doi: 10.1080/15548627.2016.1203500 |
[40] |
Verma JK, Rastogi R, Mukhopadhyay A. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494[J]. PLoS Pathog, 2017, 13(6): e1006459.
doi: 10.1371/journal.ppat.1006459 |
[41] |
Kern A, Dikic I, Behl C. The integration of autophagy and cellular trafficking pathways via RAB GAPs[J]. Autophagy, 2015, 11(12): 2393-2397.
doi: 10.1080/15548627.2015.1110668 pmid: 26565612 |
[42] |
Zhao GX, Pan H, Ouyang DY, et al. The critical molecular interconnections in regulating apoptosis and autophagy[J]. Ann Med, 2015, 47(4): 305-315.
doi: 10.3109/07853890.2015.1040831 |
[43] |
Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis[J]. Acta Biochim Biophys Sin (Shanghai), 2005, 37(11): 719-727.
doi: 10.1111/j.1745-7270.2005.00108.x |
[44] |
Lasjerdi Z, Ghanbarian H, Mohammadi Yeganeh S, et al. Comparative expression profile analysis of apoptosis-related miRNA and its target gene in Leishmania major infected macrophages[J]. Iran J Parasitol, 2020, 15(3): 332-340.
doi: 10.18502/ijpa.v15i3.4197 pmid: 33082797 |
[45] |
Lemaire J, Mkannez G, Guerfali FZ, et al. MicroRNA expression profile in human macrophages in response to Leishmania major infection[J]. PLoS Negl Trop Dis, 2013, 7(10): e2478.
doi: 10.1371/journal.pntd.0002478 |
[46] |
De Santis R, Liepelt A, Mossanen JC, et al. MiR-155 targets caspase-3 mRNA in activated macrophages[J]. RNA Biol, 2016, 13(1): 43-58.
doi: 10.1080/15476286.2015.1109768 pmid: 26574931 |
[47] |
Kumar V, Kumar A, Das S, et al. Leishmania donovani activates hypoxia inducible factor-1α and miR-210 for survival in macrophages by downregulation of NF-κB mediated pro-inflammatory immune response[J]. Front Microbiol, 2018, 9: 385.
doi: 10.3389/fmicb.2018.00385 |
[48] |
Gholamrezaei M, Rouhani S, Mohebali M, et al. MicroRNAs expression induces apoptosis of macrophages in response to Leishmania major (MRHO/IR/75/ER): an in-vitro and in-vivo study[J]. Iran J Parasitol, 2020, 15(4): 475-487.
doi: 10.18502/ijpa.v15i4.4851 pmid: 33884004 |
[49] |
Abdullah OA, El Gazzar WB, Salem TI, et al. miR-15a: a potential diagnostic biomarker and a candidate for non-operative therapeutic modality for age-related cataract[J]. Br J Biomed Sci, 2019, 76(4): 184-189.
doi: 10.1080/09674845.2019.1639337 |
[50] |
Zhang H, Li Y, Huang Q, et al. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer[J]. Cell Death Differ, 2011, 18(11): 1702-1710.
doi: 10.1038/cdd.2011.28 pmid: 21455217 |
[51] |
Hashemi N, Sharifi M, Masjedi M, et al. Locked nucleic acid-anti-let-7a induces apoptosis and necrosis in macrophages infected with Leishmania major[J]. Microb Pathog, 2018, 119: 193-199.
doi: 10.1016/j.micpath.2018.03.057 |
[52] |
Burza S, Croft SL, Boelaert M. Leishmaniasis[J]. Lancet, 2018, 392(10151): 951-970.
doi: S0140-6736(18)31204-2 pmid: 30126638 |
[53] |
Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer[J]. Nat Rev Cancer, 2018, 18(1): 5-18.
doi: 10.1038/nrc.2017.99 pmid: 29170536 |
[54] |
Poller W, Dimmeler S, Heymans S, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives[J]. Eur Heart J, 2018, 39(29): 2704-2716.
doi: 10.1093/eurheartj/ehx165 pmid: 28430919 |
[55] |
Esteller M. Non-coding RNAs in human disease[J]. Nat Rev Genet, 2011, 12(12): 861-874.
doi: 10.1038/nrg3074 pmid: 22094949 |
[1] | TAN Xiao, ZHU Qi, LIU Zhongqi, LI Jia, PENG Dingjin. Immunogenicity of Schistosoma japonicum Sj26gst mRNA vaccine candidate [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 546-551. |
[2] | WANG Xiaojun, CAI Yucheng, ZOU Xuan, LI Hui, TONG Bobo. The epidemiological characteristics of visceral leishmaniasis in Longnan City from 2005 to 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 579-585. |
[3] | ZHANG Xu, SUN Ximeng. Research progress on the immune evasion mechanism in Trichinella spiralis infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 492-496. |
[4] | ZHOU Zhengbin, PAN Gaiqin, LI Yuanyuan, LIU Qin, YANG Limin, LI Zhongqiu, MA Zhitao, ZHANG Yi, LI Shizhu. Prevalence of visceral leishmaniasis in China in 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 149-155. |
[5] | WANG Fenfen, ZHANG Peijun, REN Mengzhi, LI Daohao. Epidemiological characteristics of visceral leishmaniasis in Yangquan City, Shanxi Province from 2006 to 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 228-232. |
[6] | JIA Zhenzhen, LIU Hongying, JIANG Qi, WANG Lingling, LIU Xiangjun. A case of visceral leishmaniasis misdiagnosed as a hematological disorder [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 257-259. |
[7] | GU Yan, YU Jin, XU Cehua. Investigation on the first imported visceral leishmaniasis case in Ningxia in the past 44 years [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 260-262. |
[8] | YANG Cheng-yun, HE Zhi-quan, LU De-ling, QIAN Dan, LIU Ying, LI Su-hua, ZHOU Rui-min, DENG Yan, ZHANG Hong-wei, WANG Hao, ZHAO Dong-yang, GUO Wan-shen. Epidemiological investigation on cases of visceral leishmaniasis in Henan Province in 2020 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(4): 481-486. |
[9] | LI Teng, SHEN Yu-juan, CUI Li-jun, LIU Hua, HU Yuan, JIANG Yan-yan, CAO Jian-ping. Long non-coding RNA NEAT1 involves in intestinal epithelial cell response against Cryptosporidium parvum infection via regulating IL-8 expression [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(4): 487-492. |
[10] | LUO Zhuo-wei, ZHOU Zheng-bin, GONG Yan-feng, FENG Jia-xin, LI Yuan-yuan, ZHANG Yi, LI Shi-zhu. Current status and challenges of visceral leishmaniasis in China [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 146-152. |
[11] | HE Wei, ZHOU Bi-ying. Research progress on signal pathways related to host T cell immune response in helminth infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 223-227. |
[12] | ZHANG Ai-ping, LIANG Man-man, ZHU Ling-ling, SHENG Hao-yu, YANG Jiang-hua. Relapse of visceral leishmaniasis in a cured case after 64 years [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 266-268. |
[13] | LIU Chuang, SI Wen-wen, ZHANG Yin, LIU Rong, LIU Yi, OUYANG Rui-zhuo, SUN Jun. A discussion on the broad-spectrum and potential mechanism of artemisinin and its derivatives [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 114-120. |
[14] | YIN Chang-zhu, LI Di, CAI Juan, XU Hong-ling, WANG Ling-jun, ZHENG Ming-hui, LIU Hui. Role of Toll-like receptor 7 in anti-infective immunity [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 99-103. |
[15] | HONG Yang, LIN Jiao-jiao. Research progress on proteomics in Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 725-730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||