[1] | Saadatnia G, Golkar M. A review on human toxoplasmosis[J]. Scand J Infect Dis, 2012,44(11):805-814. | [2] | Hedhli D, Moire N, Akbar H, et al. The antigen-specific response to Toxoplasma gondii profilin, a TLR11/12 ligand, depends on its intrinsic adjuvant properties[J]. Med Microbiol Immunol, 2016,205(4):345-352. | [3] | Raetz M, Kibardin A, Sturge CR, et al. Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to Toxoplasma gondii profilin[J]. J Immunol, 2013,191(9):4818-4827. | [4] | Atmaca HT, Kul O, Karakus E, et al. Astrocytes, microglia/macrophages, and neurons expressing Toll-like receptor 11 contribute to innate immunity against encephalitic Toxoplasma gondii infection[J]. Neuroscience, 2014,269:184-191. | [5] | Koblansky AA, Jankovic D, Oh H, et al. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii[J]. Immunity, 2013,38(1):119-130. | [6] | Yarovinsky F. Innate immunity to Toxoplasma gondii infection[J]. Nat Rev Immunol, 2014,14(2):109-121. | [7] | Tosh KW, Mittereder L, Bonne-Annee S, et al. The IL-12 response of primary human dendritic cells and monocytes to Toxoplasma gondii is stimulated by phagocytosis of live parasites rather than host cell invasion[J]. J Immunol, 2016,196(1):345-356. | [8] | Mun HS, Aosai F, Norose K, et al. Toll-like receptor 4 mediates tolerance in macrophages stimulated with Toxoplasma gondii-derived heat shock protein 70[J]. Infect Immun, 2005,73(8):4634-4642. | [9] | Del RL, Butcher BA, Bennouna S, et al. Toxoplasma gondii triggers myeloid differentiation factor 88-dependent IL-12 and chemokine ligand 2 (monocyte chemoattractant protein 1) responses using distinct parasite molecules and host receptors[J]. J Immunol, 2004,172(11):6954-6960. | [10] | O’Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors-redefining innate immunity[J]. Nat Rev Immunol, 2013,13(6):453-460. | [11] | Costa Mendonca-Natividade F, Duque Lopes C, Ricci-Azevedo R, et al. Receptor heterodimerization and co-receptor engagement in TLR2 activation induced by MIC1 and MIC4 from Toxoplasma gondii[J]. Int J Mol Sci, 2019,20(20):5001. | [12] | Diebold SS, Massacrier C, Akira S, et al. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides[J]. Eur J Immunol, 2006,36(12):3256-3267. | [13] | Andrade WA, Souza Mdo C, Ramos-Martinez E, et al. Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice[J]. Cell Host Microbe, 2013,13(1):42-53. | [14] | Schaiton-Kersten T, Nakajima H, Yap G, et al. Infection of mice lacking the common cytokine receptor gamma-chain (gamma(c)) reveals an unexpected role for CD4+ T lymphocytes in early IFN-gamma-dependent resistance to Toxoplasma gondii [J]. J Immunol, 1998,160(6):2565-2569. | [15] | Wagage S, John B, Krock BL, et al. The aryl hydrocarbon receptor promotes IL-10 production by NK cells[J]. J Immunol, 2014,192(4):1661-1670. | [16] | Ivanova DL, Mundhenke TM, Gigley JP. The IL-12- and IL-23-dependent NK cell response is essential for protective immunity against secondary Toxoplasma gondii infection[J]. J Immunol, 2019,203(11):2944-2958. | [17] | Schneider CA, Figueroa Velez DX, Azevedo R, et al. Imaging the dynamic recruitment of monocytes to the blood-brain barrier and specific brain regions during Toxoplasma gondii infection[J]. Proc Natl Acad Sci USA, 2019,116(49):24796-24807. | [18] | Biswas A, Bruder D, Wolf SA, et al. Ly6C(high) monocytes control cerebral toxoplasmosis[J]. J Immunol, 2015,194(7):3223-3235. | [19] | Ehmen HG, Luder CGK. Long-term impact of Toxoplasma gondii infection on human monocytes[J]. Front Cell Infect Microbiol, 2019,9:235. | [20] | Safronova A, Araujo A, Camanzo ET, et al. Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii[J]. Nat Immunol, 2019,20(1):64-72. | [21] | Arsenijevic D, Bilbao FD, Giannakopoulos P, et al. A role for interferon-gamma in the hypermetabolic response to murine toxoplasmosis[J]. Eur Cytokine Netw, 2001,12(3):518-527. | [22] | Sturge CR, Benson A, Raetz M, et al. TLR-independent neutrophil-derived IFN-gamma is important for host resistance to intracellular pathogens[J]. Proc Natl Acad Sci USA, 2013,110(26):10711-10716. | [23] | Sturge CR, Yarovinsky F. Complex immune cell interplay in the gamma interferon response during Toxoplasma gondii infection[J]. Infect Immun, 2014,82(8):3090-3097. | [24] | Qu Y, Wang S, Fan ZS. Research progress on the biological functions and immunoregulatory effects of innate lymphoid cells[J]. Prog Biochem Biophys, 2018,45(9):897-914. (in Chinese) | [24] | ( 渠源, 王硕, 范祖森. ILC细胞的生物学功能与免疫调节作用[J]. 生物化学与生物物理进展, 2018,45(9):897-914.) | [25] | Zhang C, Tian ZG. Innate lymphoid cells and inflammatory diseases[J]. Cell Mol Immunol, 2019,35(6):641-647. (in Chinese) | [25] | ( 张彩, 田志刚. ILC细胞与自身炎症性疾病[J]. 中国免疫学杂志, 2019,35(6):641-647.) | [26] | Ivanova DL, Denton SL, Fettel KD, et al. Innate lymphoid cells in protection, pathology, and adaptive immunity during apicomplexan infection[J]. Front Immunol, 2019,10:196. | [27] | Shah S, Grotenbreg GM, Rivera A, et al. An extrafollicular pathway for the generation of effector CD8(+) T cells driven by the proinflammatory cytokine, IL-12[J]. eLife, 2015,4:e09017. | [28] | Suzuki Y. The immune system utilizes two distinct effector mechanisms of T cells depending on two different life cycle stages of a single pathogen, Toxoplasma gondii, to control its cerebral infection[J]. Parasitol Int, 2020,76:102030. | [29] | Ufermann CM, Domrose A, Babel T, et al. Indoleamine 2,3-dioxygenase activity during acute toxoplasmosis and the suppressed T cell proliferation in mice[J]. Front Cell Infect Microbiol, 2019,9:184. | [30] | Yeung AW, Terentis AC, King NJ, et al. Role of indoleamine 2,3-dioxygenase in health and disease[J]. Clin Sci (Lond), 2015,129(7):601-672. | [31] | Muller UB, Howard JC. The impact of Toxoplasma gondii on the mammalian genome[J]. Curr Opin Microbiol, 2016,32:19-25. | [32] | Meunier E, Broz P. Interferon-inducible GTPases in cell autonomous and innate immunity[J]. Cell Microbiol, 2016,18(2):168-180. | [33] | Lee Y, Yamada H, Pradipta A, et al. Initial phospholipid-dependent Irgb6 targeting to Toxoplasma gondii vacuoles mediates host defense[J]. Life Sci Alliance, 2019,3(1):e201900549. | [34] | Bekpen C, Hunn JP, Rohde C, et al. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage[J]. Genome Biol, 2005,6(11):R92. | [35] | Saeij JP, Frickel EM. Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death[J]. Curr Opin Microbiol, 2017,40:72-80. | [36] | Degrandi D, Kravets E, Konermann C, et al. Murine guanylate binding protein 2 (mGBP2) controls Toxoplasma gondii replication[J]. Proc Natl Acad Sci USA, 2013,110(1):294-299. | [37] | Selleck EM, Fentress SJ, Beatty WL, et al. Guanylate-binding protein 1 (Gbp1) contributes to cell-autonomous immunity against Toxoplasma gondii[J]. PLoS Pathog, 2013,9(4):e1003320. | [38] | Yamamoto M, Okuyama M, Ma JS, et al. A cluster of interferon-gamma-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii[J]. Immunity, 2012,37(2):302-313. | [39] | Selleck EM, Orchard RC, Lassen KG, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-gamma-activated human cells[J]. mBio, 2015,6(5):e01157-15. | [40] | Ohshima J, Lee Y, Sasai M, et al. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii[J]. J Immunol, 2014,192(7):3328-3335. | [41] | Johnston AC, Piro A, Clough B, et al. Human GBP1 does not localize to pathogen vacuoles but restricts Toxoplasma gondii[J]. Cell Microbiol, 2016,18(8):1056-1064. | [42] | Qin A, Lai DH, Liu Q, et al. Guanylate-binding protein 1 (GBP1) contributes to the immunity of human mesenchymal stromal cells against Toxoplasma gondii[J]. Proc Natl Acad Sci USA, 2017,114(6):1365-1370. | [43] | Fox BA, Gigley JP, Bzik DJ. Toxoplasma gondii lacks the enzymes required for de novo arginine biosynjournal and arginine starvation triggers cyst formation[J]. Int J Parasitol, 2004,34(3):323-331. | [44] | Sa Q, Tiwari A, Ochiai E, et al. Inducible nitric oxide synthase in innate immune cells is important for restricting cyst formation of Toxoplasma gondii in the brain but not required for the protective immune process to remove the cysts[J]. Microbes Infect, 2018,20(4):261-266. | [45] | Bando H, Lee Y, Sakaguchi N, et al. Inducible nitric oxide synthase is a key host factor for Toxoplasma GRA15-dependent disruption of the gamma interferon-induced antiparasitic human response[J]. mBio, 2018,9(5):e01738-18. | [46] | Cohen SB, Smith NL, McDougal C, et al. Beta-catenin signaling drives differentiation and proinflammatory function of IRF8-dependent dendritic cells[J]. J Immunol, 2015,194(1):210-222. | [47] | Nast R, Staab J, Meyer T, et al. Toxoplasma gondii stabilises tetrameric complexes of tyrosine-phosphorylated signal transducer and activator of transcription-1 and leads to its sustained and promiscuous DNA binding[J]. Cell Microbiol, 2018,20(11):e12887. | [48] | Gay G, Braun L, Brenier-Pinchart MP, et al. Toxoplasma gondii TgIST coopts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ-mediated host defenses[J]. J Exp Med, 2016,213(9):1779-1798. | [49] | Mammari N, Halabi MA, Yaacoub S, et al. Toxoplasma gondii modulates the host cell responses: an overview of apoptosis pathways[J]. Biomed Res Int, 2019,2019:6152489. | [50] | Braun L, Brenier-Pinchart MP, Hammoudi PM, et al. The Toxoplasma effector TEEGR promotes parasite persistence by modulating NF-κB signalling via EZH2[J]. Nat Microbiol, 2019,4(7):1208-1220. | [51] | Jin Y, Yao Y, El-Ashram S, et al. The neurotropic parasite Toxoplasma gondii induces astrocyte polarization through NFκB pathway[J]. Front Med (Lausanne), 2019,6:267. | [52] | Besteiro S. The role of host autophagy machinery in controlling Toxoplasma infection[J]. Virulence, 2019,10(1):438-447. | [53] | Choi JW, Lee J, Lee JH, et al. Omega-3 polyunsaturated fatty acids prevent Toxoplasma gondii infection by inducing autophagy via AMPK activation[J]. Nutrients, 2019,11(9):2137. | [54] | Haldar AK, Piro AS, Pilla DM, et al. The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to Chlamydia- and Toxoplasma-containing vacuoles and host resistance[J]. PLoS One, 2014,9(1):e86684. | [55] | Zhao Z, Fux B, Goodwin M, et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens[J]. Cell Host Microbe, 2008,4(5):458-469. | [56] | Liu E, Lopez Corcino Y, Portillo JA, et al. Identification of signaling pathways by which CD40 stimulates autophagy and antimicrobial activity against Toxoplasma gondii in macrophages[J]. Infect Immun, 2016,84(9):2616-2626. | [57] | Choi J, Biering SB, Hwang S. Quo vadis interferon-inducible GTPases go to their target membranes via the LC3-conjugation system of autophagy[J]. Small GTPases, 2017,8(4):199-207. | [58] | Subauste CS. Interplay between Toxoplasma gondii, autophagy, and autophagy proteins[J]. Front Cell Infect Microbiol, 2019,9:139. | [59] | Bando H, Sakaguchi N, Lee Y, et al. Toxoplasma effector TgIST targets host IDO1 to antagonize the IFN-γ-induced anti-parasitic response in human cells[J]. Front Immunol, 2018,9:2073. |
|