CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2024, Vol. 42 ›› Issue (5): 582-593.doi: 10.12140/j.issn.1000-7423.2024.05.004
• ORIGINAL ARTICLES • Previous Articles Next Articles
WANG Zhanjin1(), CHEN Zhiheng1, LI Fuyuan1, CAI Junjie1, XUE Zhangtuo1, ZHOU Ying2, CAO Yuntai3, WANG Zhan4,*(
)
Received:
2024-05-16
Revised:
2024-09-04
Online:
2024-10-30
Published:
2024-10-24
Contact:
* E-mail: Supported by:
CLC Number:
WANG Zhanjin, CHEN Zhiheng, LI Fuyuan, CAI Junjie, XUE Zhangtuo, ZHOU Ying, CAO Yuntai, WANG Zhan. Identification of lesion activities in haptic cystic echinococcosis using machine learning model based on radiomics and clinical features[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(5): 582-593.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2024.05.004
Table 1
Univariate and multivariate logistic regression analysis of the activity of the lesions and the basic information and clinical characteristics of the HCE patients
临床特征 Clinical features | 无活性 Inactive (n = 272) | 有活性 Active (n = 158) | 单因素Logistic回归 Univariatelogistic regression analysis | 多因素Logistic回归 Multivariate logistic regression analysis | |||||
---|---|---|---|---|---|---|---|---|---|
优势比(95% CI) OR(95% CI) | P | 优势比(95% CI)OR(95% CI) | P | ||||||
年龄/岁 Age/Year | 48.0 (40.0-57.0) | 41.5 (34.0-49.0) | 0.991(0.988~0.933) | < 0.05 | 0.992(0.990-0.995) | < 0.05 | |||
性别/例 Gender/case | 1.070(0.991~1.156) | > 0.05 | |||||||
男 Male | 123(45.2%)a | 83(52.5%)a | |||||||
女 Famale | 149(54.8%)a | 75(47.5%)a | |||||||
病灶位置/例 Lesion location/case | 0.989(0.946~1.034) | > 0.05 | |||||||
肝右叶 Right liver | 165(60.7%)a | 92(58.2%)a | |||||||
肝左叶 Left liver | 75(27.6%)a | 34(21.5%)a | |||||||
肝左右叶 Both liver | 32(11.8%)a | 32(20.3%)a | |||||||
病灶数量/例 No. lesion/case | 1.072(0.991~1.160) | > 0.05 | |||||||
单发 Single lesion | 171(62.9%) | 88(55.7%) | |||||||
多发 Multiple lesions | 101(37.1%) | 70(44.3%) | |||||||
病灶最大直径/cm Lesion max diameter/cm | 5.6(4.4-7.3) | 7.9(5.9-9.9) | 1.064(1.049~1.079) | < 0.05 | 1.049(1.036-1.062) | < 0.05 | |||
红细胞/ × 109L Red blood cells/ × 109L | 6.1(5.2-7.2) | 6.2(5.0-7.6) | 1.211(1.141~1.284) | < 0.05 | 1.297(1.219-1.379) | < 0.05 | |||
白细胞/ × 109L White blood cells/ × 109L | 4.6(4.2-5.0) | 5.0(4.5-5.4) | 1.018(1.000~1.037) | > 0.05 | |||||
血红蛋白/ × 109L Hemoglobin/ × 109L | 153.0(144.0-162.0) | 151.0(133.0-163.0) | 0.997(0.996~0.999) | < 0.05 | 0.995(0.993-0.997) | < 0.05 | |||
淋巴细胞/ × 109L Lymphocytes/ × 109L | 1.8(1.5-2.1) | 1.8(1.4-2.3) | 1.047(0.984~1.114) | > 0.05 | |||||
中性粒细胞/ × 109L Neutrophils/ × 109L | 3.3(2.7-4.0) | 3.5(2.7-4.7) | 0.911(0.807~1.029) | > 0.05 | |||||
单核细胞/ × 109L Monocytes/ × 109L | 0.4(0.3-0.5) | 0.4(0.3-0.4) | 1.007(0.996~1.160) | > 0.05 | |||||
血小板/ × 109L Platelets/ × 109L | 226.0(185.5-256.0) | 232.5(196.0-279.0) | 1.001(1.000~1.001) | < 0.05 | 1.000(0.999-1.000) | > 0.05 | |||
丙氨酸转氨酶/U·L-1 Alanine aminotransferase/U·L-1 | 34.0(21.0-54.0) | 27.0(18.0-44.0) | 1.000(0.999~1.000) | > 0.05 | |||||
总胆红素/U·L-1 Total bilirubin/μmol U·L-1 | 10.2(7.5-14.3) | 10.9(7.5-14.7) | 1.001(1.000~1.002) | < 0.05 | 1.001(1.000-1.002) | > 0.05 | |||
直接胆红素/U·L-1 Direct bilirubin/μmol U·L-1 | 3.4(2.6-4.6) | 4.0(2.9-5.5) | 1.001(1.000~1.003) | > 0.05 | |||||
间接胆红素/U·L-1 Indirect bilirubin/μmol U·L-1 | 6.6(4.2-10.2) | 6.2(4.2-8.9) | 0.996(0.999~1.000) | > 0.05 | |||||
总蛋白/g·L-1 Total protein/g·L-1 | 69.5(66.4-71.6) | 68.6(65.0-72.0) | 0.998(1.000~1.037) | > 0.05 | |||||
白蛋白/g·L-1 Albumin/g·L-1 | 40.1(37.7-43.5) | 39.6(37.1-42.1) | 0.985(0.977~0.993) | < 0.05 | 0.988(0.981-0.995) | < 0.05 | |||
碱性磷酸酶/U·L-1 Alkaline phosphatase/U·L-1 | 91.5(68.0-122.5) | 97.0(74.0-140.0) | 1.000(1.000~1.000) | > 0.05 | |||||
天冬氨酸转氨酶/U·L-1 Aspartate aminotransferase/U·L-1 | 25.0(18.0-38.5) | 24.0(20.0-35.0) | 1.000(0.999~1.001) | > 0.05 | |||||
凝血酶原时间/s Prothrombin time/s | 11.1(10.5-11.8) | 10.9(10.4-11.7) | 1.018(0.987~1.050) | > 0.05 | |||||
国际标准化比率 International normalized ratio | 0.9(0.9-1.0) | 0.9(0.9-1.0) | 1.414(0.978~1.114) | > 0.05 | |||||
D-二聚体/µg·L-1 D-Dimer/µg·L-1 | 0.7(0.5-0.9) | 0.6(0.4-0.9) | 1.010(0.985~1.035) | > 0.05 |
Table 2
The final selected 51 radiomics features
类型 Type | 影像特征 Radiomics features |
---|---|
灰度共生矩阵(n = 9) Gray level co-occurrence matrix (n = 9) | gradient_glcm_InverseVariance、lbp_3D_m1_glcm_ClusterShade、lbp_3D_m2_glcm_ClusterShade、wavelet_HLH_glcm_Correlation、wavelet_HLL_glcm_Correlation、wavelet_LHL_glcm_Correlation、wavelet_LHL_glcm_Imc2、wavelet_LLH_glcm_Imc2、wavelet_LLL_glcm_MaximumProbability |
形状特征(n = 2) Shape features (n = 2) | original_shape_MinorAxisLength、original_shape_Sphericity |
灰度运行长度矩阵(n = 6) Gray level run length matrix(n = 6) | exponential_glrlm_GrayLevelNonUniformity、exponential_glrlm_RunVariance、lbp_3D_k_glrlm_RunVariance、lbp_3D_m1_glrlm_ShortRunLowGrayLevelEmphasis、lbp_3D_m2_glrlm_RunVariance、wavelet_HHH_glrlm_ShortRunLowGrayLevelEmphasis |
灰度区域大小矩阵(n = 16) Gray level size zone matrix (n = 16) | exponential_glszm_GrayLevelNonUniformity、exponential_glszm_GrayLevelNonUniformityNormalized、exponential_glszm_ZoneEntropy、lbp_3D_k_glszm_GrayLevelNonUniformityNormalized、lbp_3D_k_glszm_GrayLevelVariance、lbp_3D_k_glszm_SmallAreaEmphasis、lbp_3D_k_glszm_SmallAreaLowGrayLevelEmphasis、lbp_3D_k_glszm_ZoneEntropy、lbp_3D_m1_glszm_GrayLevelNonUniformityNormalized、lbp_3D_m1_glszm_SmallAreaEmphasis、lbp_3D_m2_glszm_GrayLevelVariance、lbp_3D_m2_glszm_SmallAreaLowGrayLevelEmphasis、 log_sigma_2_0_mm_3D_glszm_LargeAreaHighGrayLevelEmphasis、original_glszm_SmallAreaHighGrayLevelEmphasis、wavelet_HHL_glszm_SmallAreaLowGrayLevelEmphasis、wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis |
灰度依赖矩阵(n = 6) Gray level dependence matrix (n = 6) | lbp_3D_k_gldm_DependenceEntropy、lbp_3D_k_gldm_DependenceVariance、lbp_3D_m1_gldm_SmallDependenceEmphasis、wavelet_HHL_gldm_LargeDependenceLowGrayLevelEmphasis、wavelet_LHH_gldm_LargeDependenceHighGrayLevelEmphasis、wavelet_LHL_gldm_LargeDependenceHighGrayLevelEmphasis |
邻域灰度差矩阵(n = 6)Neighborhood gray-tone difference matrix (n = 2) | lbp_3D_m2_ngtdm_Complexity、log_sigma_2_0_mm_3D_ngtdm_Busyness、wavelet_HHH_ngtdm_Busyness、wavelet_LHH_ngtdm_Busyness、wavelet_LLH_ngtdm_Complexity、wavelet_LLL_ngtdm_Complexity |
一阶统计特征(n = 6) First-order statistics features (n = 6) | lbp_3D_k_firstorder_Minimum、lbp_3D_m1_glszm_GrayLevelNonUniformityNormalized、lbp_3D_m2_glszm_GrayLevelVariance、wavelet_HLH_firstorder_Median、wavelet_LLH_firstorder_Skewness、wavelet_LLL_firstorder_10Percentile |
Table 3
Final parameters of the 7 models
模型 Model | 参数 Parameter |
---|---|
逻辑回归 LR | LogisticRegression (penalty = ‘l1’, solver = ‘saga’, max_iter = 1, random_state = 0) |
支持向量机 SVM | SVC (kernel = ‘linear’, C = 0.1, probability = True, random_state = 0) |
K-近邻 KNN | KNeighborsClassifier (algorithm = ‘kd_tree’, n_neighbors = 5) |
随机森林 RandomForest | RandomForestClassifier (n_estimators = 10, max_depth = 3, min_samples_split = 4, random_state = 0) |
极限梯度提升 XGBoost | XGBClassifier (n_estimators = 10, objective = ‘binary:logistic’, max_depth = 3, min_child_weight = 2, use_label_encoder = False, eval_metric = ‘error’) |
轻量梯度提升 LightGBM | LGBMClassifier (n_estimators = 10, max_depth = 3, min_child_weight = 0.5) |
极端随机树 ExtraTrees | ExtraTreesClassifier (n_estimators = 10, max_depth = 3, min_samples_split = 2, random_state = 0) |
Fig. 3
ROC curves of the machine learning model A: ROC curves of 7 machine learning algorithms during 5-fold cross-validation on the training set; B: ROC curves of these 7 algorithms on an external validation set; C: ROC curves for clinical model, radiomics model and combined model constructed using the XGBoost algorithm; D: ROC curves for clinical model, radiomics model and combined model constructed using the XGBoost algorithm.
Table 4
Performance of 7 machine learning models in training sets and validation sets
模型 Model | 队列 Cohort | 准确率 Accuracy | 曲线下面积AUC | 95%置信区间 95%CI | 灵敏度 Sensitivity | 特异度 Specificity | 阳性预测值 PPV | 阴性预测值 NPV | F1值 F1 | 阈值 Threshold |
---|---|---|---|---|---|---|---|---|---|---|
逻辑回归 LR | 训练集 Train set | 0.940 | 0.983 | 0.974~0.993 | 0.943 | 0.937 | 0.898 | 0.966 | 0.920 | 0.374 |
验证集 Validation set | 0.789 | 0.867 | 0.813~0.922 | 0.898 | 0.675 | 0.745 | 0.862 | 0.814 | 0.021 | |
支持向量机SVM | 训练集 Train set | 0.963 | 0.984 | 0.974~0.994 | 0.943 | 0.974 | 0.955 | 0.967 | 0.949 | 0.464 |
验证集 Validation set | 0.807 | 0.852 | 0.792~0.912 | 0.795 | 0.819 | 0.824 | 0.791 | 0.809 | 0.225 | |
K-近邻 KNN | 训练集 Train set | 0.921 | 0.975 | 0.965~0.986 | 0.835 | 0.971 | 0.943 | 0.910 | 0.886 | 0.500 |
验证集 Validation set | 0.789 | 0.864 | 0.810~0.917 | 0.739 | 0.843 | 0.833 | 0.753 | 0.783 | 0.250 | |
随机森林 RandomForest | 训练集 Train set | 0.926 | 0.971 | 0.956~0.986 | 0.956 | 0.908 | 0.858 | 0.972 | 0.904 | 0.418 |
验证集 Validation set | 0.795 | 0.816 | 0.751~0.882 | 0.693 | 0.904 | 0.884 | 0.735 | 0.777 | 0.460 | |
极限梯度提升 XGBoost | 训练集 Train set | 0.981 | 0.998 | 0.997~1.000 | 0.968 | 0.989 | 0.981 | 0.982 | 0.975 | 0.483 |
验证集 Validation set | 0.813 | 0.874 | 0.822~0.927 | 0.841 | 0.783 | 0.804 | 0.823 | 0.822 | 0.190 | |
轻量梯度提升LightGBM | 训练集 Train set | 0.921 | 0.984 | 0.976~0.992 | 0.956 | 0.901 | 0.848 | 0.972 | 0.899 | 0.346 |
验证集 Validation set | 0.813 | 0.868 | 0.815~0.922 | 0.863 | 0.759 | 0.792 | 0.840 | 0.812 | 0.282 | |
极端随机树 ExtraTrees | 训练集 Train set | 0.916 | 0.964 | 0.948~0.980 | 0.930 | 0.908 | 0.855 | 0.957 | 0.891 | 0.420 |
验证集 Validation set | 0.784 | 0.870 | 0.818~0.922 | 0.636 | 0.940 | 0.918 | 0.709 | 0.752 | 0.467 |
Table 5
AUC and accuracy of clinical models, radiomics models and combined models for 7 classifiers
模型 Model | 队列 Cohort | 临床模型 Clinical Models | 影像模型 Radiomics Models | 联合模型 Combined Models | |||||
---|---|---|---|---|---|---|---|---|---|
曲线下面积 AUC | 准确率 Accuracy | 曲线下面积 AUC | 准确率 Accuracy | 曲线下面积 AUC | 准确率 Accuracy | ||||
逻辑回归 LR | 训练集 Train set | 0.905 | 0.896 | 0.983 | 0.940 | 0.993 | 0.986 | ||
验证集 Validation set | 0.812 | 0.813 | 0.867 | 0.789 | 0.886 | 0.836 | |||
支持向量机 SVM | 训练集 Train set | 0.923 | 0.904 | 0.963 | 0.984 | 0.987 | 0.991 | ||
验证集 Validation set | 0.814 | 0.819 | 0.807 | 0.852 | 0.826 | 0.863 | |||
K-近邻 KNN | 训练集 Train set | 0.861 | 0.854 | 0.975 | 0.921 | 0.979 | 0.977 | ||
验证集 Validation set | 0.764 | 0.783 | 0.864 | 0.789 | 0.889 | 0.816 | |||
随机森林 RandomForest | 训练集 Train set | 0.951 | 0.921 | 0.971 | 0.926 | 0.988 | 0.957 | ||
验证集 Validation set | 0.798 | 0.762 | 0.816 | 0.795 | 0.835 | 0.826 | |||
极度梯度提升 XGBoost | 训练集 Train set | 0.977 | 0.916 | 0.998 | 0.981 | 1.000 | 0.988 | ||
验证集 Validation set | 0.839 | 0.789 | 0.874 | 0.813 | 0.931 | 0.871 | |||
轻量梯度提升 LightGBM | 训练集 Train set | 0.895 | 0.862 | 0.984 | 0.921 | 0.992 | 0.975 | ||
验证集 Validation set | 0.789 | 0.819 | 0.868 | 0.813 | 0.921 | 0.854 | |||
极端梯度树 ExtraTrees | 训练集 Train set | 0.912 | 0.919 | 0.964 | 0.916 | 0.978 | 0.964 | ||
验证集 Validation set | 0.834 | 0.824 | 0.870 | 0.784 | 0.905 | 0.865 |
Table 6
Performance of the clinical model, radiomics model and combined model in training sets and validation sets
模型 Model | 队列 Cohort | 准确率 Accuracy | 曲线下面积AUC | 95%置信区间 95% CI | 灵敏度 Sensitivity | 特异度 Specificity | 阳性预测值 PPV | 阴性预测值 NPV | F1值 F1 | 阈值 Threshold |
---|---|---|---|---|---|---|---|---|---|---|
临床模型 Clinical model | 训练集 Train set | 0.916 | 0.977 | 0.964~0.990 | 0.943 | 0.901 | 0.847 | 0.965 | 0.892 | 0.384 |
影像模型 Radiomics model | 训练集 Train set | 0.981 | 0.998 | 0.997~1.000 | 0.968 | 0.989 | 0.981 | 0.982 | 0.975 | 0.483 |
联合模型 Combined model | 训练集 Train set | 0.988 | 1.000 | 0.999~1.000 | 0.987 | 0.989 | 0.981 | 0.993 | 0.984 | 0.323 |
临床模型 Clinical model | 验证集 Validation set | 0.789 | 0.839 | 0.776~0.901 | 0.955 | 0.614 | 0.724 | 0.927 | 0.824 | 0.164 |
影像模型 Radiomics model | 验证集 Validation set | 0.813 | 0.874 | 0.822~0.927 | 0.841 | 0.783 | 0.804 | 0.823 | 0.822 | 0.190 |
联合模型 Combined model | 验证集 Validation set | 0.871 | 0.931 | 0.894~0.968 | 0.920 | 0.819 | 0.844 | 0.907 | 0.880 | 0.409 |
Fig. 4
Calibration curves and DCA curves for the clinical model, radiomics model and combined model A, B: The calibration curves for the clinical model, radiomics model and combined model in the training and external validation sets, respectively; C, D: The DCA curves for the clinical model, radiomics model and combined model in the training and external validation sets, respectively.
[1] | Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32(2): e00075-18. |
[2] | Deplazes P, Rinaldi L, Alvarez Rojas CA, et al. Global distribution of alveolar and cystic echinococcosis[J]. Adv Parasitol, 2017, 95: 315-493. |
[3] |
Tamarozzi F, Akhan O, Cretu CM, et al. Prevalence of abdominal cystic echinococcosis in rural Bulgaria, romania, and Turkey: a cross-sectional, ultrasound-based, population study from the HERACLES project[J]. Lancet Infect Dis, 2018, 18(7): 769-778.
doi: S1473-3099(18)30221-4 pmid: 29793823 |
[4] |
Rinaldi F, Brunetti E, Neumayr A, et al. Cystic echinococcosis of the liver: a primer for hepatologists[J]. World J Hepatol, 2014, 6(5): 293-305.
doi: 10.4254/wjh.v6.i5.293 pmid: 24868323 |
[5] | Chinese Doctor Association, Chinese College of Surgeons (CCS), Chinese Committee for Hadytidology (CCH). Expert consensus on diagnosis and treatment of hepatic cystic and alveolar echinococcosis (2019 edition)[J]. Chin J Dig Surg, 2019, 18(8): 711-721. (in Chinese) |
(中国医师协会外科医师分会包虫病外科专业委员会. 肝两型包虫病诊断与治疗专家共识(2019版)[J]. 中华消化外科杂志, 2019, 18(8): 711-721.) | |
[6] | Li J, Peng XY, Yang HQ, et al. Study of different type of hepatic hydatid cyst internal environment[J]. J Nongken Med, 2014, 36(2): 97-100. (in Chinese) |
(李江, 彭心宇, 杨宏强, 等. 不同分型的囊型肝包虫囊内环境的研究[J]. 农垦医学, 2014, 36(2): 97-100.) | |
[7] |
McManus DP, Zhang W, Li J, et al. Echinococcosis[J]. Lancet, 2003, 362(9392): 1295-1304.
doi: 10.1016/S0140-6736(03)14573-4 pmid: 14575976 |
[8] | WHO Informal Working Group on Echinococcosis. Guidelines for treatment of cystic and alveolar echinococcosis in humans[J]. Bull World Health Organ, 1996, 74(3): 231-242. |
[9] |
Menezes Silva A. Hydatid cyst of the liver-criteria for the selection of appropriate treatment[J]. Acta Trop, 2003, 85(2): 237-242.
doi: 10.1016/s0001-706x(02)00271-1 pmid: 12606102 |
[10] | Apaer S, Ma HZ, Li T, et al. Prognostic value of plasma IL-27 on biological viability of hepatic cystic echinococcosis[J]. Int J Infect Dis, 2021, 109: 63-71. |
[11] | Cao Y. The imaging diagnosis of echinococcosis: recent advances[J]. J Pract Radiol, 2018, 34(9): 1461-1464. (in Chinese) |
(曹源. 包虫病的影像学诊断进展[J]. 实用放射学杂志, 2018, 34(9): 1461-1464.) | |
[12] | Piccoli L, Meroni V, Genco F, et al. Serum cytokine profile by ELISA in patients with echinococcal cysts of the liver: a stage-specific approach to assess their biological activity[J]. Clin Dev Immunol, 2012, 2012: 483935. |
[13] | Ciftci TT, Yabanoglu-Ciftci S, Unal E, et al. Metabolomic profiling of active and inactive liver cystic echinococcosis[J]. Acta Trop, 2021, 221: 105985. |
[14] |
Conchedda M, Caddori A, Caredda A, et al. Degree of calcification and cyst activity in hepatic cystic echinococcosis in humans[J]. Acta Trop, 2018, 182: 135-143.
doi: S0001-706X(17)30062-1 pmid: 29486175 |
[15] | Yasen A, Li WD, Aini A, et al. Th1/Th2/Th17 cytokine profile in hepatic cystic Echinococcosis patients with different cyst stages[J]. Parasite Immunol, 2021, 43(7): e12839. |
[16] |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577.
doi: 10.1148/radiol.2015151169 pmid: 26579733 |
[17] |
Polidori T, de Santis D, Rucci C, et al. Radiomics applications in cardiac imaging: a comprehensive review[J]. Radiol Med, 2023, 128(8): 922-933.
doi: 10.1007/s11547-023-01658-x pmid: 37326780 |
[18] | Fan M, Wang KL, Pan D, et al. Radiomic analysis reveals diverse prognostic and molecular insights into the response of breast cancer to neoadjuvant chemotherapy: a multicohort study[J]. J Transl Med, 2024, 22(1): 637. |
[19] |
Chen M, Copley SJ, Viola P, et al. Radiomics and artificial intelligence for precision medicine in lung cancer treatment[J]. Semin Cancer Biol, 2023, 93: 97-113.
doi: 10.1016/j.semcancer.2023.05.004 pmid: 37211292 |
[20] |
Kang WD, Qiu X, Luo YG, et al. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis[J]. J Transl Med, 2023, 21(1): 598.
doi: 10.1186/s12967-023-04437-4 pmid: 37674169 |
[21] | Xu WY, Zhang TL, Xia YW, et al. Predicting the surrounding zone of hepatic alveolar echinococcosis based on CT machine learning[J]. Chin Comput Med Imag, 2022, 28(3): 286-290. (in Chinese) |
(许文瑶, 张铁亮, 夏雨薇, 等. 基于CT影像的机器学习模型术前预测肝脏泡型包虫病边缘带浸润[J]. 中国医学计算机成像杂志, 2022, 28(3): 286-290.) | |
[22] | Yu YH, Liu WY, Zhao Y, et al. The value of CT imaging in distinguishing pulmonary cystic echinococcosis from pulmonary abscess[J]. J Clin Radiol, 2022, 41(11): 2041-2045. (in Chinese) |
(郁耀辉, 刘文亚, 赵圆, 等. CT影像组学鉴别肺囊性包虫病与肺脓肿的价值[J]. 临床放射学杂志, 2022, 41(11): 2041-2045.) | |
[23] | Hou J, Wen H, Wang MK, et al. Analysis of the influencing factors of lesion activity in hepatic cystic echinococcosis patients[J]. Chin J Parasitol Parasit Dis, 2022, 40(3): 309-315. (in Chinese) |
(侯娇, 温浩, 王明坤, 等. 肝细粒棘球蚴病手术患者病灶活性状态的影响因素分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 309-315.)
doi: 10.12140/j.issn.1000-7423.2022.03.005 |
|
[24] | Hosmer Jr DW, Lemeshow S, Sturdivant RX. Applied logistic regression[M]. Hoboken: John Wiley & Sons, 2013: 1-35. |
[25] | Scholkopf B, Smola AJ. Learning with kernels: support vector machines, regularization, optimization, and beyond[J]. IEEE Trans Neural Netw, 2005, 16(3): 781. |
[26] | Cover T, Hart P. Nearest neighbor pattern classification[J]. IEEE Trans Inf Theory, 1967, 13(1): 21-27. |
[27] | Breiman L. Random forests[J]. Mach Learn, 2001, 45(1): 5-32. |
[28] | Ogunleye A, Wang QG. XGBoost model for chronic kidney disease diagnosis[J]. IEEE/ACM Trans Comput Biol Bioinform, 2020, 17(6): 2131-2140. |
[29] | GuolinKe QM, Finley T, Wang T, et al. Lightgbm: a highly efficient gradient boosting decision tree[C]. Cambridge: Adv Neural Inf Process Syst, 2017: 1-9. |
[30] | Geurts P, Ernst D, Wehenkel L. Extremely randomized trees[J]. Mach Learn, 2006, 63(1): 3-42. |
[31] |
Pakala T, Molina M, Wu GY. Hepatic echinococcal cysts: a review[J]. J Clin Transl Hepatol, 2016, 4(1): 39-46.
doi: 10.14218/JCTH.2015.00036 pmid: 27047771 |
[32] | Wen H, Xu MQ. Practical echinococcosis[M]. Beijing: Science Press, 2007: 76-154. (in Chinese) |
(温浩, 徐明谦. 实用包虫病学[M]. 北京: 科学出版社, 2007: 76-154.) | |
[33] | Shi R, Qiao F, Song J, et al. The value of MR IVIM-DWI in predicting the biological activity of hepatic cystic echinococcosis[J]. J Pract Radiol, 2020, 36(5): 826-830. (in Chinese) |
(石睿, 乔飞, 宋娟, 等. 磁共振体素内不相干运动扩散加权成像预测囊性肝包虫生物学活性的价值[J]. 实用放射学杂志, 2020, 36(5): 826-830.) | |
[34] | Li T, Bao HH. Evaluation of computer tomography and magnetic resonance imaging in the classification and viability of hepatic cystic echinococcosis[J]. Chin J Magn Reson Imag, 2021, 12(5): 25-29. (in Chinese) |
(李婷, 鲍海华. CT和MRI对肝囊型包虫病分型与活性的评价[J]. 磁共振成像, 2021, 12(5): 25-29.) | |
[35] | Bhutani N, Kajal P. Hepatic echinococcosis: a review[J]. Ann Med Surg, 2018, 36: 99-105. |
[36] | Joliat GR, Melloul E, Petermann D, et al. Outcomes after liver resection for hepatic alveolar echinococcosis: a single-center cohort study[J]. World J Surg, 2015, 39(10): 2529-2534. |
[37] |
Balli O, Balli G, Cakir V, et al. Percutaneous treatment of giant cystic echinococcosis in liver: catheterization technique in patients with CE1 and CE3a[J]. Cardiovasc Intervent Radiol, 2019, 42(8): 1153-1159.
doi: 10.1007/s00270-019-02248-z pmid: 31119356 |
[38] |
Cheng XY, Feng ZC, Pan BY, et al. Establishment and application of the BRP prognosis model for idiopathic pulmonary fibrosis[J]. J Transl Med, 2023, 21(1): 805.
doi: 10.1186/s12967-023-04668-5 pmid: 37951977 |
[39] | He JX, Wang B, Tao JS, et al. Accurate classification of pulmonary nodules by a combined model of clinical, imaging, and cell-free DNA methylation biomarkers: a model development and external validation study[J]. Lancet Digit Health, 2023, 5(10): e647-e656. |
[40] | Zhu ZC, Chen MJ, Hu G, et al. A pre-treatment CT-based weighted radiomic approach combined with clinical characteristics to predict durable clinical benefits of immunotherapy in advanced lung cancer[J]. Eur Radiol, 2023, 33(6): 3918-3930. |
[1] | XIE Qiao, LI Jun, DONG Lifeng. Clinical and endoscopic characteristics of 10 cases of amoebic colitis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(4): 496-501. |
[2] | HOU Jiao, WEN Hao, WANG Ming-kun, JIANG Tie-min, FANG Bin-bin, LI Jing, ZHANG Chuan-shan, WANG Hui. Analysis of the influencing factors of lesion activity in hepatic cystic echinococcosis patients [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 309-314. |
[3] | ZHU Ling-hong, ZHU Lu-min, WANG Bo, YANG Zhi-yong, ZHANG Jing-ni, JI Li, CAI Qi-gang, HAN Xiu-min. Analysis of clinical features of echinococcosis cases [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(1): 61-68. |
[4] | NING Xiao-ling*, MA Qin. Clinical Features Analysis of Demodectic Blephartis Observed in 40 Patients [J]. , 2016, 34(2): 19-182-封三. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||