CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2023, Vol. 41 ›› Issue (1): 10-14.doi: 10.12140/j.issn.1000-7423.2023.01.002
• EXPERT VIEWPOINT • Previous Articles Next Articles
Received:
2022-11-22
Revised:
2023-01-12
Online:
2023-02-28
Published:
2023-02-03
Contact:
* E-mail: Supported by:
CLC Number:
ZHANG Hong, CHENG Gong. Research progress on the effect of human volatiles on mosquito behavior[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 10-14.
蚊虫 | 挥发物 | 参考文献 |
---|---|---|
埃及伊蚊 | 氨、L-(+)乳酸、二氯甲烷、乙酸、二甲基硫醚、亚精胺、苯乙酮、二硫化碳、丁酸、3-甲基丁酸、庚酸、十四酸、十六酸、十八酸、苯甲酸、1-己醇、正丁醛、戊醛等 | [ |
冈比亚按蚊 | 氨、1-丁醇、2-甲基-1-丁醇、2-甲基丁醛、2-甲基丁酸、苯乙醇、羧酸类(C3-C8,C14)、2-甲基丁酸甲酯、丁酸丁酯、乙酸丁酯、异丁酸丁酯、二甲基硫醚等 | [ |
致倦库蚊 | L-(+)乳酸、乙酸、十六酸、十八酸、二甲基硫醚、丙酸、已酸、庚酸、辛酸、壬酸、癸酸、十一酸、十三酸、十四酸、乙二醇、苯甲醇、胆固醇、庚烯醛、丙醛、壬醛、环戊酮等 | [ |
[1] |
Leta S, Beyene TJ, De Clercq EM, et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus[J]. Int J Infect Dis, 2018, 67: 25-35.
doi: 10.1016/j.ijid.2017.11.026 |
[2] |
Milner DA Jr. Malaria pathogenesis[J]. Cold Spring Harb Perspect Med, 2018, 8(1): a025569.
doi: 10.1101/cshperspect.a025569 |
[3] |
Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue[J]. Nature, 2013, 496(7446): 504-507.
doi: 10.1038/nature12060 |
[4] |
Wu P, Yu X, Wang PH, et al. Arbovirus lifecycle in mosquito: acquisition, propagation and transmission[J]. Expert Rev Mol Med, 2019, 21: e1.
doi: 10.1017/erm.2018.6 |
[5] |
Dormont L, Bessière JM, Cohuet A. Human skin volatiles: a review[J]. J Chem Ecol, 2013, 39(5): 569-578.
doi: 10.1007/s10886-013-0286-z pmid: 23615881 |
[6] |
Elena De Obaldia M, Morita T, Dedmon LC, et al. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels[J]. Cell, 2022, 185(22): 4099-4116.e13.
doi: 10.1016/j.cell.2022.09.034 pmid: 36261039 |
[7] |
Zhang H, Zhu YB, Liu ZW, et al. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness[J]. Cell, 2022, 185(14): 2510-2522.e16.
doi: 10.1016/j.cell.2022.05.016 |
[8] |
Gallagher M, Wysocki CJ, Leyden JJ, et al. Analyses of volatile organic compounds from human skin[J]. Br J Dermatol, 2008, 159(4): 780-791.
doi: 10.1111/j.1365-2133.2008.08748.x pmid: 18637798 |
[9] |
Amann A, deL Costello B, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. J Breath Res, 2014, 8(3): 034001.
doi: 10.1088/1752-7155/8/3/034001 |
[10] |
Bernier UR, Kline DL, Barnard DR, et al. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti)[J]. Anal Chem, 2000, 72(4): 747-756.
pmid: 10701259 |
[11] |
Karunagaran M, Ramani P, Gheena S, et al. Volatile organic compounds in human breath[J]. Indian J Dent Res, 2022, 33(1): 100-104.
doi: 10.4103/ijdr.IJDR_493_20 |
[12] |
Wahl HG, Hoffmann A, Luft D, et al. Analysis of volatile organic compounds in human urine by headspace gas chromatography-mass spectrometry with a multipurpose sampler[J]. J Chromatogr A, 1999, 847(1/2): 117-125.
doi: 10.1016/S0021-9673(99)00017-5 |
[13] |
Llambrich M, Brezmes J, Cumeras R. The untargeted urine volatilome for biomedical applications: methodology and volatilome database[J]. Biol Proced Online, 2022, 24(1): 20.
doi: 10.1186/s12575-022-00184-w pmid: 36456991 |
[14] |
Probert CS, Reade S, Ahmed I. Fecal volatile organic compounds: a novel, cheaper method of diagnosing inflammatory bowel disease?[J]. Expert Rev Clin Immunol, 2014, 10(9): 1129-1131.
doi: 10.1586/1744666X.2014.943664 |
[15] |
Noël F, Piérard-Franchimont C, Piérard GE, et al. Sweaty skin, background and assessments[J]. Int J Dermatol, 2012, 51(6): 647-655.
doi: 10.1111/j.1365-4632.2011.05307.x pmid: 22607280 |
[16] |
Taylor D, Daulby A, Grimshaw S, et al. Characterization of the microflora of the human axilla[J]. Int J Cosmet Sci, 2003, 25(3): 137-145.
doi: 10.1046/j.1467-2494.2003.00181.x |
[17] |
Penn DJ, Oberzaucher E, Grammer K, et al. Individual and gender fingerprints in human body odour[J]. J R Soc Interface, 2007, 4(13): 331-340.
pmid: 17251141 |
[18] |
Verhulst NO, Andriessen R, Groenhagen U, et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria[J]. PLoS One, 2010, 5(12): e15829.
doi: 10.1371/journal.pone.0015829 |
[19] |
Verhulst NO, Qiu YT, Beijleveld H, et al. Composition of human skin microbiota affects attractiveness to malaria mosquitoes[J]. PLoS One, 2011, 6(12): e28991.
doi: 10.1371/journal.pone.0028991 |
[20] |
Natsch A, Derrer S, Flachsmann F, et al. A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type[J]. Chem Biodivers, 2006, 3(1): 1-20.
pmid: 17193210 |
[21] |
Curran AM, Prada PA, Furton KG. The differentiation of the volatile organic signatures of individuals through SPME-GC/MS of characteristic human scent compounds[J]. J Forensic Sci, 2010, 55(1): 50-57.
doi: 10.1111/j.1556-4029.2009.01236.x pmid: 20002268 |
[22] |
Buszewski B, Kesy M, Ligor T, et al. Human exhaled air analytics: biomarkers of diseases[J]. Biomed Chromatogr, 2007, 21(6): 553-566.
pmid: 17431933 |
[23] |
Libardoni M, Stevens PT, Waite JH, et al. Analysis of human breath samples with a multi-bed sorption trap and comprehensive two-dimensional gas chromatography (GCxGC)[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2006, 842(1): 13-21.
doi: 10.1016/j.jchromb.2006.05.008 |
[24] |
Miekisch W, Schubert JK, Noeldge-Schomburg GFE. Diagnostic potential of breath analysis: focus on volatile organic compounds[J]. Clin Chimica Acta, 2004, 347(1/2): 25-39.
doi: 10.1016/j.cccn.2004.04.023 |
[25] |
Ma W, Liu XY, Pawliszyn J. Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration[J]. Anal Bioanal Chem, 2006, 385(8): 1398-1408.
pmid: 16847622 |
[26] |
Mills GA, Walker V. Headspace solid-phase microextraction profiling of volatile compounds in urine: application to metabolic investigations[J]. J Chromatogr B Biomed Sci Appl, 2001, 753(2): 259-268.
pmid: 11334339 |
[27] |
Smith S, Burden H, Persad R, et al. A comparative study of the analysis of human urine headspace using gas chromatography-mass spectrometry[J]. J Breath Res, 2008, 2(3): 037022.
doi: 10.1088/1752-7155/2/3/037022 |
[28] |
de Lacy Costello BPJ, Ledochowski M, Ratcliffe NM. The importance of methane breath testing: a review[J]. J Breath Res, 2013, 7(2): 024001.
doi: 10.1088/1752-7155/7/2/024001 |
[29] |
Gibson GR, MacFarlane GT, Cummings JH. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine[J]. Gut, 1993, 34(4): 437-439.
pmid: 8491386 |
[30] |
Pleil JD, Stiegel MA, Risby TH. Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders[J]. J Breath Res, 2013, 7(1): 017107.
doi: 10.1088/1752-7155/7/1/017107 |
[31] |
Kischkel S, Miekisch W, Sawacki A, et al. Breath biomarkers for lung cancer detection and assessment of smoking related effects: confounding variables, influence of normalization and statistical algorithms[J]. Clin Chimica Acta, 2010, 411(21/22): 1637-1644.
doi: 10.1016/j.cca.2010.06.005 |
[32] |
Probert CJ, Jones PH, Ratcliffe NM. A novel method for rapidly diagnosing the causes of diarrhoea[J]. Gut, 2004, 53(1): 58-61.
doi: 10.1136/gut.53.1.58 pmid: 14684577 |
[33] |
Poli DA, Carbognani P, Corradi M, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study[J]. Respir Res, 2005, 6(1): 71.
doi: 10.1186/1465-9921-6-71 |
[34] |
Phillips M, Cataneo RN, Greenberg J, et al. Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress[J]. J Lab Clin Med, 2000, 136(3): 243-249.
pmid: 10985503 |
[35] |
Wang GD, Vega-Rodríguez J, Diabate A, et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating[J]. Science, 2021, 371(6527): 411-415.
doi: 10.1126/science.abd4359 |
[36] |
Kashiwagi GA, von Oppen S, Harburguer L, et al. The main component of the scent of Senecio madagascariensis flowers is an attractant for Aedes aegypti (L.) (Diptera : Culicidae) mosquitoes[J]. Bull Entomol Res, 2022, 112(6): 837-846.
doi: 10.1017/S0007485322000256 |
[37] |
Arbaoui AA, Chua TH. Bacteria as a source of oviposition attractant for Aedes aegypti mosquitoes[J]. Trop Biomed, 2014, 31(1): 134-142.
pmid: 24862053 |
[38] |
Logan JG, Birkett MA, Clark SJ, et al. Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes[J]. J Chem Ecol, 2008, 34(3): 308-322.
doi: 10.1007/s10886-008-9436-0 |
[39] |
Harraca V, Ryne C, Birgersson G, et al. Smelling your way to food: can bed bugs use our odour?[J]. J Exp Biol, 2012, 215(Pt 4): 623-629.
doi: 10.1242/jeb.065748 |
[40] |
Smallegange RC, Qiu YT, Bukovinszkiné-Kiss G, et al. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto[J]. J Chem Ecol, 2009, 35(8): 933-943.
doi: 10.1007/s10886-009-9668-7 pmid: 19626371 |
[41] |
Pitts RJ, Derryberry SL, Zhang ZW, et al. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids[J]. Sci Rep, 2017, 7: 40297.
doi: 10.1038/srep40297 |
[42] |
Acree F Jr, Turner RB, Gouck HK, et al. L-Lactic acid: a mosquito attractant isolated from humans[J]. Science, 1968, 161(3848): 1346-1347.
pmid: 5673445 |
[43] |
Allan SA, Bernier UR, Kline DL. Attraction of mosquitoes to volatiles associated with blood[J]. J Vector Ecol, 2006, 31(1): 71-78.
pmid: 16859092 |
[44] |
MacWilliam D, Kowalewski J, Kumar A, et al. Signaling mode of the broad-spectrum conserved CO2 receptor is one of the important determinants of odor valence in Drosophila[J]. Neuron, 2018, 97(5): 1153-1167.e4.
doi: S0896-6273(18)30053-9 pmid: 29429938 |
[45] |
Turner SL, Li N, Guda T, et al. Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes[J]. Nature, 2011, 474(7349): 87-91.
doi: 10.1038/nature10081 |
[46] |
van Loon JJA, Smallegange RC, Bukovinszkiné-Kiss G, et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles[J]. J Chem Ecol, 2015, 41(6): 567-573.
doi: 10.1007/s10886-015-0587-5 pmid: 26026743 |
[47] |
Verhulst NO, Beijleveld H, Knols BG, et al. Cultured skin microbiota attracts malaria mosquitoes[J]. Malar J, 2009, 8: 302.
doi: 10.1186/1475-2875-8-302 |
[48] |
Lacey ES, Cardé RT. Activation, orientation and landing of female Culex quinquefasciatus in response to carbon dioxide and odour from human feet: 3-D flight analysis in a wind tunnel[J]. Med Vet Entomol, 2011, 25(1): 94-103.
doi: 10.1111/j.1365-2915.2010.00921.x pmid: 21118282 |
[49] |
Tauxe GM, MacWilliam D, Boyle SM, et al. Targeting a dual detector of skin and CO2 to modify mosquito host seeking[J]. Cell, 2013, 155(6): 1365-1379.
doi: 10.1016/j.cell.2013.11.013 |
[50] | Robinson A, Busula AO, Voets MA, et al. Plasmodium-associated changes in human odor attract mosquitoes[J]. Proc Natl Acad Sci USA, 2018, 115(18): E4209-E4218. |
[1] | DAI Li-sha, ZHANG Li-xin, YIN Kun. Research advances in Toxoplasma gondii induced host mental-behavioural disorders [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 642-646. |
[2] | GUO Hong-xia, ZHAO Teng, WU Jia-hong, LI Chun-xiao. Research progress on the effects of human skin microbiota on mosquito olfactory behavior [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 94-98. |
[3] | WAN Lun, ZHANG Hua-xun, LI Kai-jie, ZHANG Cong, CAO Mu-min, WU Dong-ni, ZHANG Juan, LIN Wen, LIU Si, ZHU Hong, XIA Jing. Surveillance of malaria-transmitting vectors in Hubei Province from 2018 to 2020 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(5): 592-597. |
[4] | Zhang-ke YU, You-xing LI, Ding-hua AI, Ping ZHANG, Dan-dan LIN, Zhao-jun LI, Chun-li CAO. Effect of health education on the control of schistosomiasis in Xinjian District, Nanchang of Jiangxi Province, during 2016-2018 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(6): 644-647. |
[5] | Xin-liu YAN, Qu-zhen GONGSANG, Wei-ping WU, Can-jun ZHENG, Chui-zhao XUE, Wei-qi CHEN, Shuai HAN, Bin LI. Survey on knowledge, attitude and behaviors toward hydatid disease among villagers and students in Tibet Autonomous Region [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(1): 38-42. |
[6] | LIMei;TANGLin-hua*. Research progress on midgut bacteria of anopheline mosquitoes and their application in malaria control [J]. , 2010, 28(5): 11-376. |
[7] | CHENWenjiang;WUKaichen;LINMinghe;TANGLinhua;GUZhengcheng;WANGShanqing;LANChangxiong;LANXiuhan;LIHaiping;HUANGMingsan;CHENXiong;SHENGHuifeng;. A PILOT STUDY ON MALARIA CONTROL BY USING A NEW STRATEGY OF COMBINING STRENGTHENING INFECTION SOURCE TREATMENT AND HEALTH EDUCATION IN MOUNTAINOUS AREAS OF HAINAN PROVINCE * [J]. , 1999, 17(1): 1-4. |
[8] | LiuJianxiang;YuanHongchang;HuangJingheng;ZhangShaoji;HuGuanghan;LinDandan;JiangQingwu. EVALUATION OF A SHORT-TERM HEALTH EDUCATION PROGRAMME IN A SCHISTOSOMIASIS HIGHLY ENDEMIC AREA [J]. , 1997, 15(1): 12-41. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 268
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 328
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||