[1] | Zhang L, Feng J, Zhang SS, et al. The progress of national malaria elimination and epidemiological characteristics of malaria in China in 2017[J]. Chin J Parasitol Parasit Dis, 2018,36(3):201-209. (in Chinese) | [1] | ( 张丽, 丰俊, 张少森, 等. 2017年全国消除疟疾进展及疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2018,36(3):201-209.) | [2] | Zhang L, Feng J, Zhang SS, et al. Epidemiological characteristics of malaria and the progress towards its elimination in China in 2018[J]. Chin J Parasitol Parasit Dis, 2019,37(3):241-247. (in Chinese) | [2] | ( 张丽, 丰俊, 张少森, 等. 2018年全国疟疾疫情特征及消除工作进展[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(3):241-247.) | [3] | Zhang L, Feng J, Xia ZG, et al. Epidemiological characteristics of malaria and progress on its elimination in China in 2019[J]. Chin J Parasitol Parasit Dis, 2020,38(2):133-138. (in Chinese) | [3] | ( 张丽, 丰俊, 夏志贵, 等. 2019年全国疟疾疫情特征分析及消除工作进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(2):133-138.) | [4] | Riley EM, Stewart VA. Immune mechanisms in malaria: new insights in vaccine development[J]. Nat Med, 2013,19(2):168-178. | [5] | Ishino T, Tsuboi T. Progress toward a transmission-blocking vaccine against malaria[J]. Lancet Infect Dis, 2018,18(9):927-928. | [6] | Williamson KC, Kaslow DC. Strain polymorphism of Plasmodium falciparum transmission-blocking target antigen Pfs230[J]. Mol Biochem Parasitol, 1993,62(1):125-127. | [7] | Theisen M, Jore MM, Sauerwein R. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine[J]. Expert Rev Vaccines, 2017,16(4):329-336. | [8] | Angrisano F, Sala KA, Da DF, et al. Targeting the conserved fusion loop of HAP2 inhibits the transmission of Plasmodium berghei and falciparum[J]. Cell Rep, 2017,21(10):2868-2878. | [9] | Scally SW, McLeod B, Bosch A, et al. Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25[J]. Nat Commun, 2017,8(1):1568. | [10] | Kim TS, Kim HH, Moon SU, et al. The role of Pvs28 in sporozoite development in Anopheles sinensis and its longevity in BALB/c mice[J]. Exp Parasitol, 2011,127(2):346-350. | [11] | Nikolaeva D, Draper SJ, Biswas S. Toward the development of effective transmission-blocking vaccines for malaria[J]. Expert Rev Vaccines, 2015,14(5):653-680. | [12] | Wu YM, Sinden RE, Churcher TS, et al. Development of malaria transmission-blocking vaccines: from concept to product[J]. Adv Parasitol, 2015,89:109-152. | [13] | Draper SJ, Sack BK, King CR, et al. Malaria vaccines: Recent advances and new horizons[J]. Cell Host Microbe, 2018,24(1):43-56. | [14] | Saxena AK, Wu Y, Garboczi DN. Plasmodium p25 and p28 surface proteins: potential transmission-blocking vaccines[J]. Eukaryot Cell, 2007,6(8):1260-1265. | [15] | Liu Y, Tewari R, Ning J, et al. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes[J]. Genes Dev, 2008,22(8):1051-1068. | [16] | Miura K, Takashima E, Deng BB, et al. Functional comparison of Plasmodium falciparum transmission-blocking vaccine candidates by the standard membrane-feeding assay[J]. Infect Immun, 2013,81(12):4377-4382. | [17] | S Clinical Trials Partnership R. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial[J]. Lancet, 2015,386(9988):31-45. | [18] | Tada S, Kitajima T, Ito Y. Design and synjournal of binding growth factors[J]. Int J Mol Sci, 2012,13(5):6053-6072. |
|