CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2024, Vol. 42 ›› Issue (3): 389-398.doi: 10.12140/j.issn.1000-7423.2024.03.016
Previous Articles Next Articles
Received:
2024-01-29
Revised:
2024-05-14
Online:
2024-06-30
Published:
2024-07-16
Supported by:
CLC Number:
LIN Xiaoxia, DONG Wenge. Research advances on Pulicinae mitochondrial genomes[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(3): 389-398.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2024.03.016
区域 | 特点 | 猫栉首蚤 | 犬栉首蚤 | 东洋栉首蚤 | 印鼠客蚤 | 人蚤 |
---|---|---|---|---|---|---|
Mt-total | AT含量/% | 83.1 | 78.5 | 83.2 | 82.8 | 80.0 |
AT-偏斜 | -0.044 | -0.017 | -0.051 | -0.01 | -0.027 | |
GC-偏斜 | -0.23 | -0.182 | -0.258 | -0.221 | -0.146 | |
PCG | AT含量/% | 80.2 | 79.2 | 80.0 | 80.3 | 78.0 |
AT-偏斜 | -0.143 | -0.147 | -0.137 | -0.119 | -0.146 | |
GC-偏斜 | 0.043 | 0.04 | 0.01 | 0.039 | 0.039 | |
PCG-1st | AT含量/% | 75.4 | 75.2 | 75.3 | 75.6 | 72.5 |
AT-偏斜 | -0.032 | -0.032 | -0.022 | 0.008 | -0.035 | |
GC-偏斜 | 0.202 | 0.196 | 0.188 | 0.207 | 0.231 | |
PCG-2st | AT含量/% | 70.7 | 70.5 | 70.5 | 72.0 | 69.6 |
AT-偏斜 | -0.39 | -0.392 | -0.395 | -0.365 | -0.402 | |
GC-偏斜 | -0.07 | -0.071 | -0.069 | -0.07 | -0.089 | |
PCG-3st | AT含量/% | 94.4 | 92.0 | 94.2 | 93.3 | 92.1 |
AT-偏斜 | -0.047 | -0.052 | -0.036 | -0.033 | -0.04 | |
GC-偏斜 | -0.063 | -0.037 | -0.352 | -0.121 | -0.136 |
[1] | Wu HY. Fauna Sinica Insecta Siphonaptera[M]. Beijing: Science Press, 2007: 135-136. (in Chinese) |
(吴厚永. 中国动物志昆虫纲蚤目[M]. 北京: 科学出版社, 2007: 135-136.) | |
[2] | Bitam I, Dittmar K, Parola P, et al. Fleas and flea-borne diseases[J]. Int J Infect Dis, 2010, 14(8): e667-e676. |
[3] | Moore C, Lashnits E, Neupane P, et al. Feeding on a Bartonella henselae infected host triggers temporary changes in the Ctenocephalides felis microbiome[J]. Pathogens, 2023, 12(3): 366. |
[4] | Rajamannar V, Govindarajan R, Kumar A, et al. A review of public health important fleas (Insecta, Siphonaptera) and flea-borne diseases in India[J]. J Vector Borne Dis, 2022, 59(1): 12-21. |
[5] | Yang RF. Plague: recognition, treatment, and prevention[J]. J Clin Microbiol, 2018, 56(1): e01519-e01517. |
[6] | Blagburn BL, Dryden MW. Biology, treatment, and control of flea and tick infestations[J]. Vet Clin North Am Small Anim Pract, 2009, 39(6): 1173-1200, viii. |
[7] |
Otranto D, Wall R. New strategies for the control of arthropod vectors of disease in dogs and cats[J]. Med Vet Entomol, 2008, 22(4): 291-302.
doi: 10.1111/j.1365-2915.2008.00741.x pmid: 18785935 |
[8] | Simon C, Buckley TR, Frati F, et al. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA[J]. Annu Rev Ecol Evol Syst, 2006, 37: 545-579. |
[9] | Friedman JR, Nunnari J. Mitochondrial form and function[J]. Nature, 2014, 505(7483): 335-343. |
[10] |
Boore JL. Animal mitochondrial genomes[J]. Nucleic Acids Res, 1999, 27(8): 1767-1780.
doi: 10.1093/nar/27.8.1767 pmid: 10101183 |
[11] | Li H, Leavengood JM Jr, Chapman EG, et al. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs[J]. Proc Biol Sci, 2017, 284(1862): 20171223. |
[12] | Desalle R, Schierwater B, Hadrys H. MtDNA: the small workhorse of evolutionary studies[J]. Front Biosci, 2017, 22(5): 873-887. |
[13] |
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny[J]. Annu Rev Entomol, 2014, 59: 95-117.
doi: 10.1146/annurev-ento-011613-162007 pmid: 24160435 |
[14] | Sun JN, Chen T, Dong WG. Sequencing and analysis of the mitochondrial genome of Hoplopleura edentula[J]. Chin J Parasito Parasit Dis, 2022, 40(2): 194-210. (in Chinese) |
(孙佳宁, 陈婷, 董文鸽. 缺齿甲胁虱线粒体基因组测序与分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 194-210.)
doi: 10.12140/j.issn.1000-7423.2022.02.010 |
|
[15] | Verhoeve VI, Plumer ML, Driscoll TP, et al. The complete mitochondrial genome of the cat flea, Ctenocephalides felis[J]. Mitochondrial DNA B Resour, 2020, 5(3): 3422-3424. |
[16] | Zhang Y, Fu YT, Yao CQ, et al. Mitochondrial phylogenomics provides insights into the taxonomy and phylogeny of fleas[J]. Parasit Vectors, 2022, 15(1): 223. |
[17] | Wei FR, Jia XK, Wang Y, et al. The complete mitochondrial genome of Xenopsylla cheopis (Siphonaptera ∶ Pulicidae)[J]. Mitochondrial DNA B Resour, 2022, 7(1): 170-171. |
[18] | Chen Q, Chen L, Liao CQ, et al. Comparative mitochondrial genome analysis and phylogenetic relationship among lepidopteran species[J]. Gene, 2022, 830: 146516. |
[19] | Liu MY, Wu TT, Ju H, et al. Phylogenetic analysis of mitochondrial genome of Tabanidae (Diptera ∶ Tabanidae) reveals the present status of Tabanidae classification[J]. Insects, 2022, 13(8): 695. |
[20] | Fan XL. Comparative mitochondrial genomics and phylogenesis of Vespa[D]. Xi’an: Northwest University, 2018: 1-4. (in Chinese) |
(范旭蕾. 长黄胡蜂属比较线粒体基因组学与系统发育研究[D]. 西安: 西北大学, 2018: 1-4.) | |
[21] |
Francino MP, Ochman H. Strand asymmetries in DNA evolution[J]. Trends Genet, 1997, 13(6): 240-245.
pmid: 9196330 |
[22] | Wei SJ, Shi M, Chen XX, et al. New views on strand asymmetry in insect mitochondrial genomes[J]. PLoS One, 2010, 5(9): e12708. |
[23] | Yang YX, Xu SX, Xu JX, et al. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects[J]. PLoS One, 2014, 9(6): e99120. |
[24] | Sang LQ. Codon preference and evolution of insect mitochondria lgenes[D]. Xi’an: Shaanxi Normal University, 2019: 19-21. (in Chinese) |
(桑丽琴. 昆虫线粒体基因密码子的偏好性及其演化[D]. 西安: 陕西师范大学, 2019: 19-21.) | |
[25] |
Macey JR, Larson A, Ananjeva NB, et al. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome[J]. Mol Biol Evol, 1997, 14(1): 91-104.
pmid: 9000757 |
[26] | Liu YQ, Li YP, Pan MH, et al. The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera ∶ Saturniidae)[J]. Acta Biochim Biophys Sin, 2008, 40(8): 693-703. |
[27] |
Hassanin A, Léger N, Deutsch J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences[J]. Syst Biol, 2005, 54(2): 277-298.
pmid: 16021696 |
[28] | Paul P, Malakar AK, Chakraborty S. Codon usage vis-a-vis start and stop Codon context analysis of three dicot species[J]. J Genet, 2018, 97(1): 97-107. |
[29] | Gupta S, Singh R. Comparative study of codon usage profiles of Zingiber officinale and its associated fungal pathogens[J]. Mol Genet Genomics, 2021, 296(5): 1121-1134. |
[30] |
Jermiin LS, Graur D, Lowe RM, et al. Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes[J]. J Mol Evol, 1994, 39(2): 160-173.
pmid: 7932780 |
[31] |
Clary DO, Wolstenholme DR. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code[J]. J Mol Evol, 1985, 22(3): 252-271.
pmid: 3001325 |
[32] |
Yokobori S, Pääbo S. Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNA (Tyr)[J]. J Mol Biol, 1997, 265(2): 95-99.
pmid: 9020972 |
[33] | Zheng TC, Li P, Li LL, et al. Research advances in and prospects of ornamental plant genomics[J]. Hortic Res, 2021, 8(1): 65. |
[34] | Zhou JW, Zhang S, Wang J, et al. Chloroplast genomes in Populus (Salicaceae): comparisons from an intensively sampled genus reveal dynamic patterns of evolution[J]. Sci Rep, 2021, 11(1): 9471. |
[35] | Zheng BY. Comparative mitogenomics and phylogenetics of Ichneumonidae (Hymenoptera ∶ Aculeata)[D]. Zhejiang: Zhejiang University, 2022: 19-20. (in Chinese) |
(郑博颖. 姬蜂科昆虫比较线粒体基因组及系统发育研究[D]. 浙江: 浙江大学, 2022: 19-20.) | |
[36] |
Zhang M, Nie XP, Cao TW, et al. The complete mitochondrial genome of the butterfly Apatura metis (Lepidoptera ∶ Nymphalidae)[J]. Mol Biol Rep, 2012, 39(6): 6529-6536.
doi: 10.1007/s11033-012-1481-7 pmid: 22311013 |
[37] |
Wolstenholme DR. Animal mitochondrial DNA: structure and evolution[J]. Int Rev Cytol, 1992, 141: 173-216.
pmid: 1452431 |
[38] |
Crozier RH, Crozier YC. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization[J]. Genetics, 1993, 133(1): 97-117.
doi: 10.1093/genetics/133.1.97 pmid: 8417993 |
[39] |
Stewart JB, Beckenbach AT. Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata[J]. Mol Phylogenet Evol, 2003, 26(3): 513-526.
pmid: 12644408 |
[40] | Yona AH, Bloom-Ackermann Z, Frumkin I, et al. tRNA genes rapidly change in evolution to meet novel translational demands[J]. Elife, 2013, 2: e01339. |
[41] |
Masta SE, Boore JL. Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes[J]. Mol Biol Evol, 2008, 25(5): 949-959.
doi: 10.1093/molbev/msn051 pmid: 18296699 |
[42] | Cui P, Ji R, Ding F, et al. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of Camelidae[J]. BMC Genomics, 2007, 8: 241. |
[43] | Mei Y, Yue QY, Jia FL. Research progress on mitochondrial genomes of Dipteral insect[J]. J Environ Entomol, 2012, 34(4): 497-503. (in Chinese) |
(梅琰, 岳巧云, 贾凤龙. 双翅目昆虫线粒体基因组研究进展[J]. 环境昆虫学报, 2012, 34(4): 497-503.) | |
[44] | Yang J, Zhang RS, Chen DB, et al. The complete mitochondrial genome of Antheraea proylei strain In981 (Lepidoptera ∶ Saturniidae)[J]. Mitochondrial DNA B Resour, 2019, 4(2): 2264-2265. |
[45] |
Vobis M, D’Haese J, Mehlhorn H, et al. Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers[J]. Parasitol Res, 2004, 94(3): 219-226.
pmid: 15340839 |
[46] | Hu L, Zhao YE, Yang YN, et al. Molecular identification, transcriptome sequencing and functional annotation of Pulex irritans[J]. Acta Parasitol, 2021, 66(2): 605-614. |
[47] | Lu L, Wu HY. The molecular phylogeny of some species of the bidentatiformis group of the genus Neopsylla based on 16s rRNA gene[J]. Acta Entomol Sin, 2001, 44(4): 548-554. (in Chinese) |
(鲁亮, 吴厚永. 基于16s rRNA序列的新蚤属二齿新蚤种团部分种类的分子系统发育关系[J]. 昆虫学报, 2001, 44(4): 548-554.) | |
[48] | Yan L, Zhang Y, Wang N, et al. Comparison of mitochondrial control region sequences between Chelydridae and Platysternidae[J]. Zool Res, 2008, 29(2): 127-133. (in Chinese) |
(颜亮, 张雁, 汪宁, 等. 鳄龟科和平胸龟科线粒体控制区序列分析和结构比较[J]. 动物学研究, 2008, 29(2): 127-133.) | |
[49] | Wang W, Zhu H, Hu HX, et al. Heteroplasmy in mtDNA control region and phylogenetics of five sturgeons[J]. Zool Res, 2009, 30(5): 487-496. (in Chinese) |
(王巍, 朱华, 胡红霞, 等. 五种鲟鱼线粒体控制区异质性和系统发育分析[J]. 动物学研究, 2009, 30(5): 487-496.) | |
[50] | Xiong L, Nie LW. Comparison research of mitochondrial control region sequences of Pelodiscus sinensis from different loci[J]. J Biol, 2010, 27(6): 9-12. (in Chinese) |
(熊磊, 聂刘旺. 不同产地中华鳖的线粒体控制区序列分析及结构比较[J]. 生物学杂志, 2010, 27(6): 9-12.) | |
[51] | Domes K, Maraun M, Scheu S, et al. The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs[J]. BMC Genomics, 2008, 9: 532. |
[52] | Guo ZL, Yuan ML. Research progress of mitochondrial genomes of Hemiptera insects[J]. Sci Sin Vitae, 2016, 46(2): 151-166. (in Chinese) |
(郭仲龙, 袁明龙. 半翅目昆虫线粒体基因组学研究进展[J]. 中国科学: 生命科学, 2016, 46(2): 151-166.) | |
[53] |
Saito S, Tamura K, Aotsuka T. Replication origin of mitochondrial DNA in insects[J]. Genetics, 2005, 171(4): 1695-1705.
doi: 10.1534/genetics.105.046243 pmid: 16118189 |
[54] | Yuan ML, Wei DD, Wang BJ, et al. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari ∶ Tetranychidae): high genome rearrangement and extremely truncated tRNAs[J]. BMC Genomics, 2010, 11: 597. |
[55] |
Wheeler WC. Nucleic acid sequence phylogeny and random outgroups[J]. Cladistics, 1990, 6(4): 363-367. [PubMed]
doi: 10.1111/j.1096-0031.1990.tb00550.x pmid: 34933486 |
[56] | Guo LL. The complete chloroplast and mitochondrial genomics and phylogenetic analysis of Morus[D]. Zhenjiang: Jiangsu University of Science and Technology, 2022: 36-39. (in Chinese) |
(郭亮亮. 桑属植物叶绿体和线粒体基因组学和进化分析[D]. 镇江: 江苏科技大学, 2022: 36-39.) | |
[57] | Zhang Y, Zhang E, He SP. Studieson the structure of the control region of the Bagridae in Chinaandits phylogentic significance[J]. Acta Hydrobiol Sin, 2003, 27(5): 463-467. (in Chinese) |
(张燕, 张鹗, 何舜平. 中国鲿科鱼类线粒体DNA控制区结构及其系统发育分析[J]. 水生生物学报, 2003, 27(5): 463-467.) | |
[58] | Liu H, Yang G, Wei FW, et al. Sequence variability of the mitochondrial DNA control region and population genetic structure of Sika deers (Cervus nippon) in China[J]. Acta Zool Sin, 2003, 49(1): 53-60. (in Chinese) |
(刘海, 杨光, 魏辅文, 等. 中国大陆梅花鹿mtDNA控制区序列变异及种群遗传结构分析[J]. 动物学报, 2003, 49(1): 53-60.) | |
[59] |
Randi E, Lucchini V. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris[J]. J Mol Evol, 1998, 47(4): 449-462.
pmid: 9767690 |
[60] | Song Y, Wang XQ, Song YX, et al. SSR characteristic analysis based on the complete sequences of Gossypium mitochondrial genomes[J]. Molecular Plant Breeding, 2023, 1-19. (in Chinese) |
(宋岩, 王祥勤, 宋怡璇, 等. 基于棉花线粒体基因组全序列的SSR特征分析[J]. 分子植物育种, 2023, 1-19.) | |
[61] |
Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution[J]. Mol Biol Evol, 1987, 4(3): 203-221.
doi: 10.1093/oxfordjournals.molbev.a040442 pmid: 3328815 |
[62] |
Pâques F, Leung WY, Haber JE. Expansions and contractions in a tandem repeat induced by double-strand break repair[J]. Mol Cell Biol, 1998, 18(4): 2045-2054.
doi: 10.1128/MCB.18.4.2045 pmid: 9528777 |
[63] |
Broughton RE, Dowling TE. Length variation in mitochondrial DNA of the minnow Cyprinella spiloptera[J]. Genetics, 1994, 138(1): 179-190.
doi: 10.1093/genetics/138.1.179 pmid: 8001785 |
[64] |
Sheffield NC, Song H, Cameron SL, et al. A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda∶Insecta) and genome descriptions of six new beetles[J]. Mol Biol Evol, 2008, 25(11): 2499-2509.
doi: 10.1093/molbev/msn198 pmid: 18779259 |
[65] |
Cornuet JM, Garnery L, Solignac M. Putative origin and function of the intergenic region between COⅠ and COⅡ of Apis mellifera L. mitochondrial DNA[J]. Genetics, 1991, 128(2): 393-403.
doi: 10.1093/genetics/128.2.393 pmid: 1649072 |
[66] | Zhang J. The evolutionary study on Monogeneans using mitochondrial genomes[D]. Guangzhou: Zhongshan University, 2011: 83-85. (in Chinese) |
(张娟. 单殖吸虫线粒体基因组进化生物学研究[D]. 广州: 中山大学, 2011: 83-85.) | |
[67] | Yan Y. Complete mitochondrial genomes of two genera of Volucellini with their phylogeny[D]. Shanxi: Shanxi University of Science and Technology, 2022: 125-126. (in Chinese) |
(闫艳. 蜂蚜蝇族两属线粒体全基因组序列及系统发育分析[D]. 陕西: 陕西理工大学, 2022: 125-126.) | |
[68] | Wei SJ. Characteristics and evolution of mitochondrial genome of Hymenoptera and its application in phylogenetic research[D]. Hangzhou: Zhejiang University, 2009: 134-136. (in Chinese) |
(魏书军. 膜翅目线粒体基因组的特征与进化及其在系统发育研究中的应用[D]. 杭州: 浙江大学, 2009: 134-136.) | |
[69] |
Rand DM. Thermal habit, metabolic rate and the evolution of mitochondrial DNA[J]. Trends Ecol Evol, 1994, 9(4): 125-131.]
doi: 10.1016/0169-5347(94)90176-7 pmid: 21236795 |
[70] | Whiting MF. Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera[J]. Zool Scr, 2002, 31(1): 93-104. |
[71] | Huang DY, Engel MS, Cai CY, et al. Diverse transitional giant fleas from the Mesozoic era of China[J]. Nature, 2012, 483(7388): 201-204. |
[72] | Zhao XD, Wang B, Bashkuev AS, et al. Mouthpart homologies and life habits of Mesozoic long-proboscid scorpionflies[J]. Sci Adv, 2020, 6(10): eaay1259. |
[73] | Tihelka E, Giacomelli M, Huang DY, et al. Fleas are parasitic scorpionflies[J]. Palaeoentomology, 2020, 3(6): 641-653. |
[1] | FU Yong, ZHANG Haining, CHEN Wangkai, SHI Zhenghe, ZHANG Xueyong, GUO Zhihong, DUO Hong, SHEN Xiuying, MENG Ru, LI Zhi. Characteristics of genetic differentiation of Echinococcus multilocularis and E. shiquicus in Qinghai region [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(3): 309-315. |
[2] | WANG Ning, PENG Hanqi, GAO Changzhe, CHENG Yuheng, LYU Dabing. Characterization of the mitochondrial genome and phylogenetic implication of Schistosoma japonicum featured with “nocturnal cercarial emergence” [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(6): 699-707. |
[3] | MA Zhiya, XIE Shichen, HE Yuanhui, GAO Wenwei, LIU Qing, ZHU Xingquan, ZHENG Wenbin. Infection status and genetic variation analysis of Haemonchus contortus in sheep in Shanxi Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(6): 733-738. |
[4] | WANG Dan, HE Zhiquan, LIU Ying, LIU Lingzhi, CHEN Huihui, JIANG Tiantian, JI Penghui, QIAN Dan, YANG Chengyun, ZHANG Hongwei. Molecular identification and genetic tracing of Giardia lamblia isolated from an infected case [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 380-383. |
[5] | LIU Ya-fang, CHEN Bin, LU Xin-yan, LI Guang-hua, DU Chun-hong, JIANG Dan-dan, YANG Xing. Complete mitochondrial genome sequence of Rhipicephalus microplus [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 677-681. |
[6] | LIU Lu-yao, YANG Cong-shan, ZHANG Xiang, CHENG Rong-rong, HONG Yu-hang, WU Cheng-long, SUN Meng, CHEN Mu-xin, AI Lin, XU Qian-ming. Morphological characteristics and molecular identification of Heterakis sp. peacock origin [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 816-820. |
[7] | Jian-xiu LIU, Chun-hua GAO, Yue-tao YANG, Bin ZHENG, Jun-yun WANG. Evaluation of the value of K26 sequence applied in identification of Leishmania isolates in China [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(2): 181-187. |
[8] | Lei TAN, Ai-bing WANG, Xiao-xian KONG, Xuan LIANG, Jun-lin HE, Jie LI, Dan HU, wei LIU. Polymorphism of mitochondrial pnad1 gene of Spirometra erinaceieuropaei sparganum isolated from different species of snake in Hunan Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(4): 448-452. |
[9] | Wei RUAN, Ling-ling ZHANG, Hua-liang CHEN, Qiao-yi LU, Xuan ZHANG, Yan FENG, Li-nong YAO. Investigation of the source regions of Babesia spp. infection in the central and south areas of Zhejiang Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(2): 125-130. |
[10] | Qiu-an HU, Shan LV, Yun-hai GUO, He-xiang LIU, Yi ZHANG. Genetic diversity of Angiostrongylus cantonensis in Nan’ao Island of Guangdong Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(2): 130-135. |
[11] | CHEN Mu-xin1,2, CHEN Jia-xu2, LIU Wei2, FENG Xin-yu2, CHEN Shen-bo1,2,CHEN Shao-hong2, CAI Yu-chun1,2, XU Bin2, HU Wei1,2*. Sequencing and Phylogenetic Tree Construction of 18S Ribosomal DNA from Five Species of Plasmodium from Yunnan Border between China and Myanmar and Other Areas [J]. , 2016, 34(6): 4-493-499. |
[12] | ZHANG Cang-lin,ZHOU Hong-ning,NIE Ren-hua,LIU Hui,WANG Jian,. Species Identification and Sequence Analysis of Plasmodium spp. in Border Areas of Yunnan Province by 18S rRNA-based Nested PCR [J]. , 2016, 34(3): 7-220-226. |
[13] | LI Xue-mei1,LI Xiao-bing2,3,HUANG Wei1 *. Research Progress on Mitochondrial Genome Structure in the Phylum Apicomplexa [J]. , 2014, 32(5): 14-388-392. |
[14] | LI Jian1,SHI Yun-liang1,SHI Wei1,FANG Fang1,ZHOU Qing-an1,. Ultrastructural Observation on Nymphal Armillifer sp. by Scanning Electron Microscopy and Phylogenetic Analysis Based on 18S rRNA [J]. , 2012, 30(2): 1-81-85. |
[15] | XIAOJing-ying;CAILian-shun;NagatakiMitsuru;TokuhiroShinji;JarillaBlancaR.;ShimadaMasaaki;DavidBlair;AgatsumaTakeshi*. Study on Molecular Phylogeny of Schistosoma bovis Based on Mitochondrial DNA Sequence and Gene Order [J]. , 2010, 28(4): 3-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||