CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2021, Vol. 39 ›› Issue (4): 505-513.doi: 10.12140/j.issn.1000-7423.2021.04.014
• REVIEWS • Previous Articles Next Articles
SUN Ye-ting(), CAO Jian-ping, SHEN Yu-juan*(
)
Received:
2020-10-16
Revised:
2021-01-22
Online:
2021-08-30
Published:
2021-08-11
Contact:
SHEN Yu-juan
E-mail:18863665089@163.com;shenyj12@nipd.chinacdc.cn
Supported by:
CLC Number:
SUN Ye-ting, CAO Jian-ping, SHEN Yu-juan. Research progress on immunosuppressive function of myeloid-derived suppressor cells and its role in parasitic infection[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 505-513.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2021.04.014
[1] |
Condamine T, Mastio J, Gabrilovich DI. Transcriptional regulation of myeloid-derived suppressor cells[J]. J Leukoc Biol, 2015, 98(6):913-922.
doi: 10.1189/jlb.4RI0515-204R |
[2] |
Millrud CR, Bergenfelz C, Leandersson K. On the origin of myeloid-derived suppressor cells[J]. Oncotarget, 2017, 8(2):3649-3665.
doi: 10.18632/oncotarget.v8i2 |
[3] |
Goulart MR, Hlavaty SI, Chang YM, et al. Phenotypic and transcriptomic characterization of canine myeloid-derived suppressor cells[J]. Sci Rep, 2019, 9(1):3574.
doi: 10.1038/s41598-019-40285-3 |
[4] |
Youn JI, Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice[J]. J Immunol, 2008, 181(8):5791-5802.
doi: 10.4049/jimmunol.181.8.5791 |
[5] |
Yamauchi Y, Safi S, Blattner C, et al. Circulating and tumor myeloid-derived suppressor cells in resectable non-small cell lung cancer[J]. Am J Respir Crit Care Med, 2018, 198(6):777-787.
doi: 10.1164/rccm.201708-1707OC |
[6] |
Vetsika EK, Koukos A, Kotsakis A. Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer[J]. Cells, 2019, 8(12):1647.
doi: 10.3390/cells8121647 |
[7] |
Dietlin TA, Hofman FM, Lund BT, et al. Mycobacteria-induced Gr-1+subsets from distinct myeloid lineages have opposite effects on T cell expansion[J]. J Leukoc Biol, 2007, 81(5):1205-1212.
doi: 10.1189/jlb.1006640 |
[8] |
Zöller M. Janus-faced myeloid-derived suppressor cell exosomes for the good and the bad in cancer and autoimmune disease[J]. Front Immunol, 2018, 9:137.
doi: 10.3389/fimmu.2018.00137 |
[9] | Parker KH, Beury DW, Ostrand-Rosenberg S. Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment[J]. Adv Cancer Res, 2015, 128:95-139. |
[10] |
Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected[J]. J Clin Invest, 2015, 125(9):3356-3364.
doi: 10.1172/JCI80005 |
[11] |
Koinis F, Vetsika EK, Aggouraki D, et al. Effect of first-line treatment on myeloid-derived suppressor cells’ subpopulations in the peripheral blood of patients with non-small cell lung cancer[J]. J Thorac Oncol, 2016, 11(8):1263-1272.
doi: 10.1016/j.jtho.2016.04.026 |
[12] |
Abrams SI, Waight JD. Identification of a G-CSF-granulocytic MDSC axis that promotes tumor progression[J]. Oncoimmunology, 2012, 1(4):550-551.
pmid: 22754783 |
[13] |
Dolcetti L, Peranzoni E, Ugel S, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF[J]. Eur J Immunol, 2010, 40(1):22-35.
doi: 10.1002/eji.200939903 pmid: 19941314 |
[14] |
Cheng P, Corzo CA, Luetteke N, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein[J]. J Exp Med, 2008, 205(10):2235-2249.
doi: 10.1084/jem.20080132 |
[15] |
Sinha P, Okoro C, Foell D, et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells[J]. J Immunol, 2008, 181(7):4666-4675.
doi: 10.4049/jimmunol.181.7.4666 |
[16] | Lee CR, Lee W, Cho SK, et al. Characterization of multiple cytokine combinations and TGF-β on differentiation and functions of myeloid-derived suppressor cells[J]. Int J Mol Sci, 2018, 19(3):e869. |
[17] |
Gallina G, Dolcetti L, Serafini P, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells[J]. J Clin Invest, 2006, 116(10):2777-2790.
doi: 10.1172/JCI28828 |
[18] |
Rutschman R, Lang R, Hesse M, et al. Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production[J]. J Immunol, 2001, 166(4):2173-2177.
pmid: 11160269 |
[19] |
Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis[J]. Cancer Res, 2005, 65(24):11743-11751.
doi: 10.1158/0008-5472.CAN-05-0045 |
[20] |
Delano MJ, Scumpia PO, Weinstein JS, et al. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in Sepsis[J]. J Exp Med, 2007, 204(6):1463-1474.
doi: 10.1084/jem.20062602 |
[21] |
Cimen Bozkus C, Elzey BD, Crist SA, et al. Expression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of T cell immunity[J]. J Immunol, 2015, 195(11):5237-5250.
doi: 10.4049/jimmunol.1500959 pmid: 26491198 |
[22] |
Falck-Jones S, Vangeti S, Yu M, et al. Functional monocytic myeloid-derived suppressor cells increase in blood but not airways and predict COVID-19 severity[J]. J Clin Invest, 2021, 131(6):e144734.
doi: 10.1172/JCI144734 |
[23] |
Groth C, Hu X, Weber R, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression[J]. Br J Cancer, 2019, 120(1):16-25.
doi: 10.1038/s41416-018-0333-1 |
[24] |
de Haas N, de Koning C, Spilgies L, et al. Improving cancer immunotherapy by targeting the STATe of MDSCs[J]. Oncoimmunology, 2016, 5(7):e1196312.
doi: 10.1080/2162402X.2016.1196312 |
[25] |
Szuster-Ciesielska A, Hryciuk-Umer E, Stepulak A, et al. Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood[J]. Acta Oncol, 2004, 43(3):252-258.
pmid: 15244248 |
[26] |
Pinton L, Solito S, Damuzzo V, et al. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression[J]. Oncotarget, 2016, 7(2):1168-1184.
doi: 10.18632/oncotarget.6662 pmid: 26700461 |
[27] |
Ohl K, Tenbrock K. Reactive oxygen species as regulators of MDSC-mediated immune suppression[J]. Front Immunol, 2018, 9:2499.
doi: 10.3389/fimmu.2018.02499 |
[28] |
Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1[J]. J Immunol, 2009, 182(1):240-249.
doi: 10.4049/jimmunol.182.1.240 |
[29] |
Chung AS, Wu X, Zhuang G, et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy[J]. Nat Med, 2013, 19(9):1114-1123.
doi: 10.1038/nm.3291 |
[30] |
Georgantas RW, Hildreth R, Morisot S, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control[J]. Proc Natl Acad Sci U S A, 2007, 104(8):2750-2755.
pmid: 17293455 |
[31] |
Mucha J, Majchrzak K, Taciak B, et al. MDSCs mediate angiogenesis and predispose canine mammary tumor cells for metastasis via IL-28/IL-28RA (IFN-λ) signaling[J]. PLoS One, 2014, 9(7):e103249.
doi: 10.1371/journal.pone.0103249 |
[32] | Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy[J]. Cell Cycle Georget Tex, 2005, 4(9):1179-1184. |
[33] |
Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma[J]. Nature, 2010, 467(7311):86-90.
doi: 10.1038/nature09284 |
[34] |
Marigo I, Bosio E, Solito S, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor[J]. Immunity, 2010, 32(6):790-802.
doi: 10.1016/j.immuni.2010.05.010 |
[35] |
Geis-Asteggiante L, Belew AT, Clements VK, et al. Differential content of proteins, mRNAs, and miRNAs suggests that MDSC and their exosomes may mediate distinct immune suppressive functions[J]. J Proteome Res, 2018, 17(1):486-498.
doi: 10.1021/acs.jproteome.7b00646 pmid: 29139296 |
[36] |
Yang RC, Cai Z, Zhang Y, et al. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells[J]. Cancer Res, 2006, 66(13):6807-6815.
doi: 10.1158/0008-5472.CAN-05-3755 |
[37] |
Li F, Zhao Y, Wei L, et al. Tumor-infiltrating Treg, MDSC, and IDO expression associated with outcomes of neoadjuvant chemotherapy of breast cancer[J]. Cancer Biol Ther, 2018, 19(8):695-705.
doi: 10.1080/15384047.2018.1450116 |
[38] |
Dugast AS, Haudebourg T, Coulon F, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion[J]. J Immunol, 2008, 180(12):7898-7906.
doi: 10.4049/jimmunol.180.12.7898 |
[39] |
Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSCs-mediated T cell activation[J]. J Exp Med, 2014, 211(5):781-790.
doi: 10.1084/jem.20131916 |
[40] | Bardhan K, Anagnostou T, Boussiotis VA. The PD1: PD-L1/2 pathway from discovery to clinical implementation[J]. Front Immunol, 2016, 7:550. |
[41] | Antonios JP, Soto H, Everson RG, et al. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma[J]. Neuro Oncol, 2017, 19(6):796-807. |
[42] | Sachanonta N, Medana IM, Roberts R, et al. Host vascular endothelial growth factor is trophic for Plasmodium falciparum-infected red blood cells[J]. Asian Pac J Allergy Immunol, 2008, 26(1):37-45. |
[43] |
Shrestha D, Bajracharya B, Paula-Costa G, et al. Expression and production of cardiac angiogenic mediators depend on the Trypanosoma cruzi-genetic population in experimental C57BL/6 mice infection[J]. Microvasc Res, 2017, 110:56-63.
doi: S0026-2862(16)30139-X pmid: 27956355 |
[44] |
Paiva LA, Coelho KA, Lunagomes T, et al. Schistosome infection-derived hepatic stellate cells are cellular source of prostaglandin D2: role in TGF-β-stimulated VEGF production[J]. Prostaglandins Leukot Essent Fatty Acids, 2015, 95:57-62.
doi: 10.1016/j.plefa.2015.01.004 |
[45] |
Dennis RD, Schubert U, Bauer C. Angiogenesis and parasitic helminth-associated neovascularization[J]. Parasitology, 2011, 138(4):426-439.
doi: 10.1017/S0031182010001642 pmid: 21232174 |
[46] | Ying JH, Shen YJ, Cao JP, et al. Immunoscreening and sequence analysis of a cDNA library of adult Trichinella spiralis[J]. Chin J Schisto Control, 2017, 29(3):320-323. (in Chinese) |
(尹建海, 沈玉娟, 曹建平, 等. 小鼠细粒棘球蚴体外促血管生成作用研究[J]. 中国血吸虫病防治杂志, 2017, 29(3):320-323.) | |
[47] |
Yang L, DeBusk LM, Fukuda K, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis[J]. Cancer Cell, 2004, 6(4):409-421.
pmid: 15488763 |
[48] |
Ostrand-Rosenberg S, Fenselau C. Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment[J]. J Immunol, 2018, 200(2):422-431.
doi: 10.4049/jimmunol.1701019 pmid: 29311384 |
[49] | Chouaib S, Umansky V, Kieda C. The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment[J]. Contemp Oncol (Pozn), 2018, 22(1a):7-13. |
[50] |
Horikawa N, Abiko K, Matsumura N, et al. Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells[J]. Clin Cancer Res, 2017, 23(2):587-599.
doi: 10.1158/1078-0432.CCR-16-0387 pmid: 27401249 |
[51] |
Min Y, Li J, Qu P, et al. C/EBP-δ positively regulates MDSCs expansion and endothelial VEGFR2 expression in tumor development[J]. Oncotarget, 2017, 8(31):50582-50593.
doi: 10.18632/oncotarget.v8i31 |
[52] |
Curtis VF, Wang H, Yang P, et al. A PK2/Bv8/PROK2 antagonist suppresses tumorigenic processes by inhibiting angiogenesis in glioma and blocking myeloid cell infiltration in pancreatic cancer[J]. PLoS One, 2013, 8(1):e54916.
doi: 10.1371/journal.pone.0054916 |
[53] | Yoshiro I, Kenji K, Takamasa Y, et al. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway[J]. Int J Mol Sci, 2018, 19(4):e1232. |
[54] |
Pingwara R, Witt-Jurkowska K, Ulewicz K, et al. Interferon lambda 2 promotes mammary tumor metastasis via angiogenesis extension and stimulation of cancer cell migration[J]. J Physiol Pharmacol, 2017, 68(4):573-583.
pmid: 29151074 |
[55] |
Rivera LB, Bergers G. Intertwined regulation of angiogenesis and immunity by myeloid cells[J]. Trends Immunol, 2015, 36(4):240-249.
doi: 10.1016/j.it.2015.02.005 pmid: 25770923 |
[56] | Riabov V, Gudima A, Wang N, et al. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis[J]. Front Physiol, 2014, 5:75. |
[57] |
Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells[J]. Nat Rev Cancer, 2013, 13(10):739-752.
doi: 10.1038/nrc3581 pmid: 24060865 |
[58] |
Van Ginderachter JA, Beschin A, De Baetselier P, et al. Myeloid-derived suppressor cells in parasitic infections[J]. Eur J Immunol, 2010, 40(11):2976-2985.
doi: 10.1002/eji.201040911 pmid: 21061431 |
[59] |
Atochina O, Daly-Engel T, Piskorska D, et al. A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1+ macrophages that suppress naive CD4+ T cell proliferation via an IFN-gamma and nitric oxide-dependent mechanism[J]. J Immunol, 2001, 167(8):4293-4302.
pmid: 11591752 |
[60] |
Goñi O, Alcaide P, Fresno M. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1+) CD11b+ immature myeloid suppressor cells[J]. Int Immunol, 2002, 14(10):1125-1134.
doi: 10.1093/intimm/dxf076 |
[61] |
Voisin MB, Buzoni-Gatel D, Bout D, et al. Both expansion of regulatory GR1+CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis[J]. Infect Immun, 2004, 72(9):5487-5492.
doi: 10.1128/IAI.72.9.5487-5492.2004 |
[62] |
Cotterell SE, Engwerda CR, Kaye PM. Leishmania donovani infection of bone marrow stromal macrophages selectively enhances myelopoiesis by a mechanism involving GM-CSF and TNF-alpha[J]. Blood, 2000, 95(5):1642-1651.
pmid: 10688819 |
[63] |
Sunderkötter C, Kunz M, Steinbrink K, et al. Resistance of mice to experimental leishmaniasis is associated with more rapid appearance of mature macrophages in vitro and in vivo[J]. J Immunol, 1993, 151(9):4891-4901.
pmid: 8409447 |
[64] |
Modolell M, Choi BS, Ryan RO, et al. Local suppression of T cell responses by arginase-induced L-arginine depletion in nonhealing leishmaniasis[J]. PLoS Negl Trop Dis, 2009, 3(7):e480.
doi: 10.1371/journal.pntd.0000480 |
[65] |
Voronov E, Dotan S, Gayvoronsky L, et al. IL-1-induced inflammation promotes development of leishmaniasis in susceptible BALB/c mice[J]. Int Immunol, 2010, 22(4):245-257.
doi: 10.1093/intimm/dxq006 pmid: 20181656 |
[66] | Pan W, Shen YJ, Cao JP, et al. Accumulation of myeloid-derived suppressor cells in the spleen and peripheral blood of Schistosoma japonicum-infected mice[J]. Chin J Parasitol Parasit Dis, 2014, 32(1):6-11. (in Chinese) |
(潘伟, 沈玉娟, 曹建平, 等. 髓源抑制性细胞在日本血吸虫感染小鼠脾脏及外周血富集的研究[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(1):6-11.) | |
[67] |
Alvarez-Silva M, Silva LCD, Borojevic R. Cell membrane-associated proteoglycans mediate extramedullar myeloid proliferation in granulomatous inflammatory reactions to schistosome eggs[J]. J Cell Sci, 1993, 104(2):477-484.
doi: 10.1242/jcs.104.2.477 |
[68] |
Herbert DR, Holscher C, Mohrs M, et al. Alternative macrophage activation is essential for survival during schistosomiasis and down-modulates T helper 1 responses and immunopathology[J]. Immunity, 2004, 20(5):623-635.
doi: 10.1016/S1074-7613(04)00107-4 |
[69] |
Pesce JT, Ramalingam TR, Mentink-Kane MM, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis[J]. PLoS Pathog, 2009, 5(4):e1000371.
doi: 10.1371/journal.ppat.1000371 |
[70] |
Terrazas LI, Walsh KL, Piskorska D, et al. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1+ cells that secrete anti-inflammatory cytokines and Inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections[J]. J Immunol, 2001, 167(9):5294-5303.
pmid: 11673545 |
[71] |
Pan W, Zhou HJ, Shen YJ, et al. Surveillance on the status of immune cells after Echinnococcus granulosus protoscoleces infection in Balb/c mice[J]. PLoS One, 2013, 8(3):e59746.
doi: 10.1371/journal.pone.0059746 |
[72] | Cao SK, Pan W, Liu H, et al. Expression and activity of arginase from monocytic-type myeloid-derived suppressor cells in rats infected with Echinococcus granulosus[J]. Chin J Parasitol Parasit Dis, 2016, 34(1):27-31. (in Chinese) |
(曹胜魁, 潘伟, 刘华, 等. 细粒棘球蚴感染小鼠单核髓源抑制性细胞精氨酸酶的表达和活性研究[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(1):27-31.) | |
[73] | Zhang XF, Gong WC, Shen YJ, et al. Dynamic changes of myeloid-derived suppressor cells and regulatory T cells in livers of mice infected with Echinococcus granulosus[J]. Chin J Schisto Control, 2019, 31(6):622-627. (in Chinese) |
(张小凡, 巩文词, 沈玉娟, 等. 细粒棘球绦虫感染小鼠肝脏髓源抑制性细胞与调节性T细胞比例动态变化[J]. 中国血吸虫病防治杂志, 2019, 31(6):622-627.) | |
[74] | Yu AP, Yin JH, Shen YJ, et al. Changes of myeloid-derived suppressor cells and Th17 cells in mice infected with Echinococcus granulosus protoscoleces[J]. Chin J Parasitol Parasit Dis, 2018, 36(3):224-230. (in Chinese) |
(于爱萍, 尹建海, 沈玉娟, 等. 细粒棘球蚴感染小鼠髓源抑制性细胞与Th17细胞比例的变化[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3):224-230.) | |
[75] | Zhou XJ, Wang W, Cu F, et al. Myeloid-derived suppressor cells exert immunosuppressive function on the T helper 2 in mice infected with Echinococcus granulosus[J]. Exp Parasitol, 2020, 215:e107917. |
[76] |
Yu AP, Yin JH, Shen YJ, et al. Microarray analysis of long non-coding RNA expression profiles in monocytic myeloid-derived suppressor cells in Echinococcus granulosus-infected mice[J]. Parasit Vectors, 2018, 11(1):327.
doi: 10.1186/s13071-018-2905-6 |
[77] |
Yin JH, Liu CS, Yu AP, et al. Pro-angiogenic activity of monocytic-type myeloid-derived suppressor cells from Balb/c mice infected with Echinococcus granulosus and the regulatory role of miRNAs[J]. Cell Physiol Biochem, 2018, 51(3):1207-1220.
doi: 10.1159/000495498 |
[78] |
Brys L, Beschin A, Raes G, et al. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection[J]. J Immunol, 2005, 174(10):6095-6104.
pmid: 15879104 |
[79] |
Bronte V, Serafini P, De Santo C, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice[J]. J Immunol, 2003, 170(1):270-278.
doi: 10.4049/jimmunol.170.1.270 |
[80] |
Goodridge HS, Marshall FA, Wilson EH, et al. In vivo exposure of murine dendritic cell and macrophage bone marrow progenitors to the phosphorylcholine-containing filarial nematode glycoprotein ES-62 polarizes their differentiation to an anti-inflammatory phenotype[J]. Immunology, 2004, 113(4):491-498.
pmid: 15554927 |
[81] |
Loke P, MacDonald AS, Allen JE. Antigen-presenting cells recruited by Brugia malayi induce Th2 differentiation of naïve CD4+ T cells[J]. Eur J Immunol, 2000, 30(4):1127-1135.
pmid: 10760802 |
[1] | SUN Ye-ting, JIANG Nan, JIANG Yan-yan, LI Teng, JIANG Xiao-feng, CAO Jian-ping, SHEN Yu-juan. Study on the polarization of MDSC stimulated by Echinococcus granulosus protoscolex-derived exosomes in vitro [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 175-180. |
[2] | YU Ai-ping, YIN Jian-hai, GONG Wen-ci, CAO Sheng-kui, CAO Jian-ping, SHEN Yu-juan*. Changes of myeloid-derived suppressor cells and Th17 cells in mice infected with Echinococcus granulosus protoscoleces [J]. , 2018, 36(3): 5-224-230. |
[3] | CAI Yu-chun1,2, CHEN Shao-hong2, LU Yan2, AI Lin2, YANG Chun-li2, CHEN Jia-xu2*. Dynamic changes of density of Babesia microti in mice with latent infection after re-infection, immunosuppression, or random transmission to healthy mice [J]. , 2017, 35(4): 4-327-332. |
[4] | LIU Jian-feng1,2, JIN Xiao-lin1,2, YANG Kun1,2, XU Jin-shui3, QIAN Yi-xin1,2,YAN Wei-an1,2, ZHA Xi4, GE Sang Zhuo Ga4, YUAN Dan Wang Mu4,. Epidemiological Survey on Intestinal Parasitic Infections in Lhasa City in 2014 [J]. , 2016, 34(5): 4-405-408. |
[5] | WANG Bin*, HU Dan-biao, GU Min-xia, WANG Zhi-gang, YU Yi-jiang, XU Zhi-qiang. Food-borne Parasitic Infection in Intermediate Hosts in Ninghai County of Zhejiang Province [J]. , 2016, 34(1): 21-91-92. |
[6] | ZHANGXiao-li;YUXin-hui;TANGXiao-yun;SONGBao-hui;LINGHong*;LIUYa-wei;WANGZhi-long. Prophylactic Immunization of Dangguibuxue Decoction Against Cryptosporidium Infection in Immune Suppressed Mice [J]. , 2008, 26(3): 5-182. |
[7] | GEYi-yue;ZHANGGai;WUJiang-ping;WANGYong;HUWei;TANMing-juan. Changes of CD4+CD25+ T Cells in the Spleen of Mice Infected with Toxoplasma gondii [J]. , 2007, 25(3): 7-192. |
[8] | ZHENGYa-dong;LUOXue-nong;HUZhi-min;CAIXue-peng*. Defense Mechanisms of Taeniidae against Host Immune Response [J]. , 2006, 24(1): 15-66. |
[9] | LIUBin;HELixian;QUJieming;HUBijie;WANGBaoqing;LIXiying. IMMUNE RESPONSE IN PNEUMOCYSTIS CARINII PNEUMONIA IN RATS [J]. , 2000, 18(1): 13-42. |
[10] | YinGuorong;GuoZhiyong;YinLei;ZhaoJiahui;QiaoZhongdong**;FrankWunderlich. EFFECT OF TESTOSTERONE ON LEISHMANIA DONOVANI INFECTION LEVELS OF MURINE BONE MARROW DERIVED MACROPHAGES [J]. , 1998, 16(4): 251-255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||