CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2020, Vol. 38 ›› Issue (4): 453-463.doi: 10.12140/j.issn.1000-7423.2020.04.010
• ORIGINAL ARTICLES • Previous Articles Next Articles
SHEN Rui-xin1, WANG Yi-ting2, LI Chun-xiao2, WU Jia-hong1, ZHAO Tong-yan2, CHEN Yan1,*()
Received:
2020-01-17
Online:
2020-08-30
Published:
2020-09-09
Contact:
CHEN Yan
E-mail:820786583@qq.com
Supported by:
CLC Number:
SHEN Rui-xin, WANG Yi-ting, LI Chun-xiao, WU Jia-hong, ZHAO Tong-yan, CHEN Yan. Analysis of deltamethrin resistance-related genes based on the transcriptome of Culex pipiens quinquefasciatus[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(4): 453-463.
Table 1
Primers and Probes for RT-PCR
基因名称Gene name | 引物(5′→3′) Primer sequence(5′→3′) | 产物长度/bp Product length/bp |
---|---|---|
18S | F:ATTACGTCCCTGCCCTTTGTAC | 74 |
R:CACCTTCAAAGACCTCACTAA- ATAATCC | ||
P:CACCGCCCGTCGCTACTACCGA | ||
RPL8 | F:AGTTCAAGCTCCGCAAGCA | 62 |
R:CACGAACTGGCCGGTGTAC | ||
P:TTCATCGCCGCCGAGGGC | ||
CPIJ004726 | F:TACGGCCCTGCACCAATC | 73 |
R:CGCCAAAGCAGGAAAATCC | ||
P:CGTCGCAAAACACCACCAGCATA- CAC | ||
CPIJ019750 | F:CGCCTATGCACGCAAACC | 68 |
R:GCCGAACACCTGGATCTATCTT | ||
P:CACCTTGAAAAACATCGGACCGGC | ||
P45011A1 | F:GACATATCTTTCAGTGCTTCGTAG- GT | 79 |
R:AGAAGACCCGTGCCGAAGTA | ||
P:TGACCGCCATGAGCTGCCAACA | ||
OBP45 | F:CACATTGCGCGTCAAAACC | 66 |
R:CTGGTGTGGCAGTTGAGATTTC | ||
P:CCGCTGCGAGCTGTCACTGAGC | ||
GSTd2 | F:GCGCTCAATGTTGGCGTACT | 65 |
R:CCTCGATCACGACCTTCAA | ||
P:CCAAATCAACTCCGGCGGCCA | ||
NYDOP7 | F:CTCACCATCATCTACTCGTACACC- TT | 74 |
R:GCCTGTTCACGCATCGATT | ||
P:CCTGAAGGCGGTCTCGGCCC | ||
P4506B1 | F:AACCCGCCGCTTGCTT | 76 |
R:CGAGCTGGCCGTTGATTT | ||
P:TGACCAAACTGTGCACCAA- GAACTACAGCC | ||
RPS14/S29e | F:AATCTGCAAAGCAACATGTATAA- AGAG | 146 |
R:CTCGGCACAGTGTTGAACAACT | ||
P:TCCCCCCACCGCCCTTTCG | ||
Carbonic anhydrase | F:CACAAGTGGCGACGAGGAT | |
R:TTTTCACTTTCTGGCACTGTTTG | 91 | |
P:CGAATCCATCGGGTCCATTCCG | ||
OR7a | F:ACTCGAAGAAGCCGTAGCAGTT | 67 |
R:ACGATGCTGAACGTGATAATCG | ||
P:AAACCCAACGGTTGCTGCGCC | ||
OR10a | F:ATCGCTACGACCGGGAAGT | 57 |
R:TCTGAGCTCGAACCATCATCAT | ||
P:CGCCAGCTCATCCA | ||
CPIJ006795 | F:TGGCACCCCTGTGGATATAA | 111 |
R:TTGGCCACACCCGGAGTA | ||
P:TCCCCCCGGTAGAACCTTCCCTCA |
Table 2
The resistance level of Cx. pipiens quinquefasciatus larvae against deltamethrin
蚊虫株Strain | LC50值/μg·ml-1 LC50 value/μg·ml-1 | 95%置信区间 95% confidence interval | χ2 (df) | P值 P value | 抗性倍数 Resistance ratio |
---|---|---|---|---|---|
SS | 0.000 002 9 | 0.000 001 92~0.000 006 87 | 9.265(3) | 0.026 | 1 |
HN | 0.014 | 0.002~0.032 | 2.521(3) | 0.472 | 4 828 |
RR | 0.572 | 0.381~0.782 | 5.224(4) | 0.265 | 197 241 |
Table 3
The main differentially-expressed genes of the RR and HN strains compared to the SS strain
差异表达基因Differentially-expressed genes | RR株 RR strain | HN株 HN strain | 注释Annotate | |||||||
---|---|---|---|---|---|---|---|---|---|---|
倍数变化Fold change | P值P value | 倍数变化Fold change | P值P value | |||||||
上调表达 Up-regulatedexpression | ||||||||||
CPIJ01956 | 11.967 | 8.10 × 10-31 | 10.614 | 7.30 × 10-16 | 保守假定蛋白Conserved hypothetical protein, mRNA | |||||
XP_001851477.1 | 11.871 | 1.64 × 10-30 | 8.736 | 2.33 × 10-7 | 微管连接蛋白9 Sorting nexin-9 | |||||
CP020784 | 11.766 | 6.05 × 10-29 | 5.225 | 4.63 × 10-5 | 信号转导Signal transduction | |||||
NC_040576 | 11.641 | 4.47 × 10-28 | 4.172 | 9.12 × 10-95 | ABC转运蛋白//RNA解旋酶 ABC transporter//RNA helicase | |||||
CPIJ009463 | 11.159 | 5.34 × 10-27 | 10.798 | 3.90 × 10-25 | 保守假蛋白 Conservative hypothetical protein | |||||
PF02517 | 10.861 | 1.36 × 10-25 | 10.743 | 1.67 × 10-24 | 金属离子结合//水解酶活性 Metal ion binding//hydro-lyase activity | |||||
KT002464 | 10.512 | 5.51 × 10-24 | 10.343 | 2.59 × 10-23 | DNA模板对氧化还原状态//转录的负调控的响应 Response to redox state//negative regulation of transcription, DNA-templated | |||||
CPIJ009422 | 10.420 | 7.43 × 10-60 | 3.202 | 1.27 × 10-12 | 假定蛋白Hypothetical protein | |||||
CP020782.1 | 10.334 | 7.70 × 10-23 | 10.129 | 7.38 × 10-22 | Oryzias latipes strain HNI chromosome 4 | |||||
CP012523.1 | 10.302 | 6.18 × 10-23 | 8.069 | 1.68 × 10-12 | Drosophila busckii chromosome 2L sequence | |||||
CPIJ004172 | 10.293 | 4.59 × 10-45 | 10.22 | 5.78 × 10-43 | 苏糖基-tRNA合成酶 Threonyl-tRNA synthetase | |||||
CPIJ009661 | 10.230 | 1.65 × 10-24 | 5.217 | 1.20 × 10-12 | 保守假定蛋白 Conserved hypothetical protein | |||||
KT002466.1 | 10.220 | 7.28 × 10-23 | 9.614 | 7.48 × 10-20 | 乙酰胆碱酯酶等位基因 Culex quinquefasciatus acetylcholinesterase gene, ace1R2,ace1R2large allele | |||||
KXJ79544.1 | 10.216 | 6.38 × 10-23 | 10.373 | 7.50 × 10-23 | 假设蛋白(RP20_CCG000387 Hypothetical protein (RP20_CCG000387) | |||||
CPIJ012473 | 10.206 | 7.35 × 10-23 | 10.614 | 7.30 × 10-16 | 微管结合蛋白 Microtubule binding protein | |||||
CPIJ001064 | 10.172 | 2.70 × 10-22 | 10.407 | 3.51 × 10-6 | 锌指蛋白596-样 Zinc finger protein 596-like | |||||
XP_012565408.1 | 10.125 | 8.40 × 10-9 | 10.343 | 2.59 × 10-23 | 非活性菱形蛋白1 Inactive rhomboid protein 1 | |||||
CPIJ008871 | 10.123 | 1.19 × 10-22 | 8.280 | 4.61 × 10-8 | 假定蛋白Conserved hypothetical protein | |||||
CPIJ010145 | 9.947 | 8.22 × 10-22 | 9.228 | 1.59 × 10-18 | Culex quinquefasciatus midasin | |||||
CPIJ001172 | 9.942 | 8.16 × 10-22 | 10.107 | 3.19 × 10-22 | Culex quinquefasciatus l-caldesmon | |||||
LR584403.1 | 9.934 | 1.22 × 10-21 | 9.479 | 1.27 × 10-19 | Rhinatrema bivittatum genome assembly, chromosome: 17 | |||||
CP050460.1 | 9.931 | 8.56 × 10-23 | 9.533 | 2.27 × 10-21 | Leeuwenhoekiella sp. ZYFB001 chromosome | |||||
下调表达 Down-regulated expression | ||||||||||
AY958427 | 16.842 | 1.94 × 10-59 | 15.882 | 4.08 × 10-56 | 胰凝乳蛋白酶 Chymotrypsin | |||||
CPIJ000835 | 15.749 | 1.60 × 10-52 | 10.412 | 1.32 × 10-206 | 胰凝乳蛋白酶2 Chymotrypsin 2 | |||||
AF468495.1 | 15.439 | 2.28 × 10-50 | 11.585 | 2.25 × 10-112 | 胰凝乳蛋白酶2 Chymotrypsin 2 | |||||
CPIJ015368 | 15.017 | 3.12 × 10-48 | 14.773 | 1.22 × 10-46 | 翻译控制的肿瘤蛋白 Translation-controlled tumor protein | |||||
CPIJ001132 | 14.845 | 2.85 × 10-46 | 12.164 | 4.34 × 10-59 | 延伸因子2 Elongation factor 2 | |||||
AF420269.1 | 14.751 | 2.28 × 10-46 | 14.506 | 8.36 × 10-45 | 长型D7clu1唾液蛋白 Long D7clu1 salivary protein | |||||
CPIJ001132 | 14.348 | 1.89 × 10-44 | 14.103 | 5.87 × 10-43 | 延伸因子2 Elongation factor 2 | |||||
CPIJ010145 | 14.299 | 1.25 × 10-42 | 14.054 | 4.16 × 10-41 | 延伸因子2 Elongation factor 2 | |||||
CPIJ003009 | 14.133 | 1.96 × 10-42 | 13.168 | 5.81 × 10-37 | DNAⅡ型拓扑异构酶(ATP水解)活性DNA type Ⅱ topoisomerase (ATP hydrolysis) activity | |||||
AF468495 | 14.042 | 2.58 × 10-42 | 13.797 | 7.89 × 10-41 | 胰凝乳蛋白酶样蛋白 Chymotrypsin-like protein | |||||
差异表达基因Differentially-expressed genes | RR株 RR strain | HN株 HN strain | 注释Annotate | |||||||
倍数变化Fold change | P值P value | 倍数变化Fold change | P值P value | |||||||
XP_018402067 | 13.926 | 1.61 × 10-41 | 13.681 | 4.53 × 10-40 | 磷脂分解代谢过程//脂质分解代谢过程Phospholipid catabolic process // Lipid catabolic process | |||||
CPIJ013279 | 13.803 | 6.02 × 10-41 | 13.559 | 1.73 × 10-39 | 保守的假定蛋白 Conservative hypothetical protein) | |||||
XM_010779802 | 13.621 | 5.01 × 10-39 | 2.026 | 2.77 × 10-3 | 无 No | |||||
AY958426 | 13.433 | 1.40 × 10-142 | 4.260 | 1.81 × 10-6 | 胰蛋白酶mRNA Trypsin mRNA | |||||
AY388545 | 13.398 | 9.79 × 10-39 | 4.251 | 4.60 × 10-11 | 推定的17 500唾液肽mRNA Putative 17 500 basic salivary protein mRNA | |||||
CPIJ001563 | 13.222 | 1.19 × 10-36 | 12.974 | 2.90 × 10-35 | ATP合酶γ链、线粒体ATP Synthase gamma chain, mitochondria | |||||
CPIJ000835 | 13.208 | 2.48 × 10-37 | 10.949 | 8.92 × 10-38 | 胰凝乳蛋白酶2 Chymotrypsin 2 | |||||
CPIJ013914 | 12.915 | 8.75 × 10-36 | 6.175 | 3.62 × 10-36 | 重组蛋白 Culex quinquefasciatus dullard protein | |||||
XM_029112977 | 12.828 | 1.75 × 10-34 | 5.358 | 5.28 × 10-50 | 黏蛋白Mucin-7 | |||||
CPIJ010012 | 12.796 | 1.22 × 10-15 | 11.830 | 1.15 × 10-30 | 假定蛋白Hypothetical protein |
[1] | Nasci RS, Miller BR. Culicine mosquitoes and the agents they transmit[J]. Biol Dis Vectors, 1996,18(2):85-97. |
[2] |
Arensburger P, Megy K, Waterhouse RM, et al. Sequencing of Culex pipiens quinquefasciatus establishes a platform for mosquito comparative genomics[J]. Science, 2010,330(6000):86-88.
doi: 10.1126/science.1191864 pmid: 20929810 |
[3] |
Liu NN, Liu HQ, Zhu F, et al. Differential expression of genes in pyrethroid resistant and susceptible mosquitoes, Culex quinquefasciatus (S.)[J]. Gene, 2007,394(1/2):61-68.
doi: 10.1016/j.gene.2007.01.032 |
[4] |
Ding YR, Yan ZT, Si FL, et al. Mitochondrial genes associated with pyrethroid resistance revealed by mitochondrial genome and transcriptome analyses in the malaria vector Anopheles sinensis (Diptera ∶ Culicidae)[J]. Pest Manag Sci, 2020,76(2):769-778.
doi: 10.1002/ps.5579 pmid: 31392850 |
[5] | Liu BQ, Chen B, Qiao L. The progress of quantitative trait loci for mosquitoes pyrethroid resistance[J]. J Chongqing Norm Univ Nat Sci, 2016,33(6):26-31. (in Chinese) |
( 刘柏琦, 陈斌, 乔梁. 蚊虫抗拟除虫菊酯数量性状位点的研究进展[J]. 重庆师范大学学报(自然科学版), 2016,33(6):26-31.) | |
[6] | Cai YS, Deng ML, Yuan MT, et al. Resistance of Culex quinquefasciatus to normal used insceticides in Guang’an City[J]. Chin J Hyg Insect Equip, 2018,24(4):410-411. (in Chinese) |
( 蔡运山, 邓茂玲, 袁茂涛, 等. 广安市致倦库蚊对常用杀虫剂的抗性监测[J]. 中华卫生杀虫药械, 2018,24(4):410-411.) | |
[7] | Yang XY, Liu C, Chen XW, et al. Resistance to 3 kind of pyrethroid insecticides in Culex pipiens quinquefasciatus from Haikou[J]. China Trop Med, 2019,19(11):1092-1094. (in Chinese) |
( 杨新艳, 刘超, 陈学文, 等. 海口市致倦库蚊成蚊对3种菊酯类杀虫剂的抗性调查[J]. 中国热带医学, 2019,19(11):1092-1094.) | |
[8] | Liang QG, Wang ZY, Yang X, et al. Investigation on resistance of Culex pipiens quinquefasciatus to four commonly used insecticides in Guiyang[J]. Chin J Endem, 2019,8(6):476-480. (in Chinese) |
( 梁秋果, 王政艳, 杨茜, 等. 贵阳市致倦库蚊成蚊对4种常用杀虫剂抗药性调查[J]. 中华地方病学杂志, 2019,8(6):476-480.) | |
[9] | Liu Y, Zhang SH, Qin YM, et al. Investigation on current status of resistance of Culex pipiens quinquefasciatus to commonly used insecticides in Shenzhen City, Guangdong Province[J]. Chin J Vect Biol Contr, 2020,31(3):362-365. (in Chinese) |
( 刘阳, 张韶华, 秦彦珉, 等. 广东省深圳市致倦库蚊对常用杀虫剂抗药性现状调查[J]. 中国媒介生物学及控制杂志, 2020,31(3):362-365.) | |
[10] |
Phillips RS. Current status of malaria and potential for control[J]. Clin Microbiol Rev, 2001,14(1):208-226.
doi: 10.1128/CMR.14.1.208-226.2001 pmid: 11148010 |
[11] | Sawicki RM, Denholm I. Adaptation of insects to insecticides[M] //Evered D, Collins GM. Ciba Foundation Symposium--Origins and Development of Adaptation. Chichester, UK: John Wiley & Sons, Ltd., 2008: 152-166. |
[12] |
Brattsten LB, Holyoke CW, Leeper JR, et al. Insecticide resistance: challenge to pest management and basic research[J]. Science, 1986,231(4743):1255-1260.
doi: 10.1126/science.231.4743.1255 pmid: 17839561 |
[13] | Xu X, Qian K. Research progress on the resistance of mosquitoes to pyrethroid insecticides[J]. Cap J Pub Health, 2018,12(1):9-12. (in Chinese) |
( 徐鑫, 钱坤. 蚊虫对拟除虫菊酯类杀虫剂抗性研究进展[J]. 首都公共卫生, 2018,12(1):9-12.) | |
[14] | Wang CB, Lu WH, Lin Y, et al. Development and application of transcriptome sequencing[J]. Eucalypt Sci Technol, 2018,35(4):20-26. (in Chinese) |
( 王楚彪, 卢万鸿, 林彦, 等. 转录组测序的发展和应用[J]. 桉树科技, 2018,35(4):20-26.) | |
[15] |
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009,10(1):57-63.
doi: 10.1038/nrg2484 pmid: 19015660 |
[16] |
Bräutigam A, Gowik U. What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research[J]. Plant Biol (Stuttg), 2010,12(6):831-841.
doi: 10.1111/plb.2010.12.issue-6 |
[17] |
Bonizzoni M, Ochomo E, Dunn WA, et al. RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs[J]. Parasit Vectors, 2015,8:474.
doi: 10.1186/s13071-015-1083-z pmid: 26381877 |
[18] |
Lv Y, Wang WJ, Hong SC, et al. Comparative transcriptome analyses of deltamethrin-susceptible and-resistant Culex pipiens pallens by RNA-seq[J]. Mol Genet Genomics, 2016,291(1):309-321.
doi: 10.1007/s00438-015-1109-4 pmid: 26377942 |
[19] |
Li CX, Guo XX, Zhang YM, et al. Identification of genes involved in pyrethroid-, propoxur-, and dichlorvos-insecticides resistance in the mosquitoes, Culex pipiens complex (Diptera ∶ Culicidae)[J]. Acta Trop, 2016,157:84-95.
doi: 10.1016/j.actatropica.2016.01.019 pmid: 26802491 |
[20] |
Bonizzoni M, Afrane Y, Dunn WA, et al. Comparative transcriptome analyses of deltamethrin-resistant and-susceptible Anopheles gambiae mosquitoes from Kenya by RNA-seq[J]. PLoS One, 2012,7(9):e44607.
doi: 10.1371/journal.pone.0044607 pmid: 22970263 |
[21] | WHO. Report of the WHO Informal Consultationon the evaluation and testing of insecticides[R]. Geneva: WHO, 1996: 7-11. |
[22] |
Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-seq[J]. Nat Methods, 2008,5(7):621-628.
doi: 10.1038/nmeth.1226 pmid: 18516045 |
[23] |
Garber M, Grabherr MG, Guttman M, et al. Computational methods for transcriptome annotation and quantification using RNA-seq[J]. Nat Methods, 2011,8(6):469-477.
doi: 10.1038/nmeth.1613 pmid: 21623353 |
[24] |
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014,15(12):550.
doi: 10.1186/s13059-014-0550-8 pmid: 25516281 |
[25] |
Young MD, Wakefield MJ, Smyth GK, et al. Gene ontology analysis for RNA-seq: accounting for selection bias[J]. Genome Biol, 2010,11(2):R14.
doi: 10.1186/gb-2010-11-2-r14 pmid: 20132535 |
[26] |
Sun HB, Sun LC, He J, et al. Cloning and characterization of ribosomal protein S29, a deltamethrin resistance associated gene from Culex pipiens pallens[J]. Parasitol Res, 2011,109(6):1689-1697.
doi: 10.1007/s00436-011-2443-z |
[27] |
Yu J, Hu SL, Ma K, et al. Ribosomal protein S29 regulates metabolic insecticide resistance through binding and degradation of CYP6N3[J]. PLoS One, 2014,9(4):e94611.
doi: 10.1371/journal.pone.0094611 pmid: 24728095 |
[28] | Liu HQ, Liu YB, Song YP, et al. Cloning and bioinformatics analysis of full length cDNA of permethrin-resistance associated opsin gene PR-OP of Culex pipens pallens[J]. J Northwest A F Univ Nat Sci Ed, 2010,38(9):109-117. (in Chinese) |
( 刘虎岐, 刘应保, 宋云鹏, 等. 淡色库蚊氯菊酯抗性相关基因PR-OP全长cDNA的克隆及生物信息学分析[J]. 西北农林科技大学学报(自然科学版), 2010,38(9):109-117.) | |
[29] |
Zhou D, Duan BY, Xu Y, et al. NYD-OP7/PLC regulatory signaling pathway regulates deltamethrin resistance in Culex pipiens pallens (Diptera ∶ Culicidae)[J]. Parasit Vectors, 2018,11(1):419.
doi: 10.1186/s13071-018-3011-5 pmid: 30012184 |
[30] |
Hu XB, Sun Y, Wang WJ, et al. Cloning and characterization of NYD-OP7, a novel deltamethrin resistance associated gene from Culex pipiens pallens[J]. Pestic Biochem Physiol, 2007,88(1):82-91.
doi: 10.1016/j.pestbp.2006.09.004 |
[31] |
Tang AH, Tu CP. Biochemical characterization of Drosophila glutathione S-transferases D1 and D21[J]. J Biol Chem, 1994,269(45):27876-27884.
pmid: 7961718 |
[32] |
Gong YH, Li T, Zhang L, et al. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus[J]. Int J Biol Sci, 2013,9(9):863-871.
doi: 10.7150/ijbs.6744 |
[33] |
Tene BF, Poupardin R, Costantini C, et al. Resistance to DDT in an urban setting: common mechanisms implicated in both M and S forms of Anopheles gambiae in the City of Yaoundé Cameroon[J]. PLoS One, 2013,8(4):e61408.
doi: 10.1371/journal.pone.0061408 pmid: 23626680 |
[34] |
Menze BD, Riveron JM, Ibrahim SS, et al. Multiple insecticide resistance in the malaria vector Anopheles funestus from northern Cameroon is mediated by metabolic resistance alongside potential target site insensitivity mutations[J]. PLoS One, 2016,11(10):e0163261
doi: 10.1371/journal.pone.0163261 pmid: 27723825 |
[35] |
Djègbè I, Agossa FR, Jones CM, et al. Molecular characterization of DDT resistance in Anopheles gambiae from Benin[J]. Parasit Vectors, 2014,7(1):409.
doi: 10.1186/1756-3305-7-409 |
[36] |
Paramasivan R, Sivaperumal R, Dhananjeyan KJ, et al. Prediction of 3-dimensional structure of salivary odorant-binding protein-2 of the mosquito Culex pipiens quinquefasciatus, the vector of human lymphatic filariasis[J]. In Silico Biol, 2007,7(1):1-6.
pmid: 17688430 |
[37] |
Xu PX, Choo YM, de la Rosa A, et al. Mosquito odorant receptor for DEET and methyl jasmonate[J]. Proc Natl Acad Sci USA, 2014,111(46):16592-16597.
doi: 10.1073/pnas.1417244111 pmid: 25349401 |
[38] |
Hallem EA, Dahanukar A, Carlson JR. Insect odor and taste receptors[J]. Annu Rev Entomol, 2006,51:113-135.
doi: 10.1146/annurev.ento.51.051705.113646 pmid: 16332206 |
[39] |
Ingham VA, Anthousi A, Douris V, et al. A sensory appendage protein protects malaria vectors from pyrethroids[J]. Nature, 2020,577(7790):376-380.
doi: 10.1038/s41586-019-1864-1 pmid: 31875852 |
[40] |
Yu TY, Garcia VE, Symington LS. CDK and Mec1/Tel1-catalyzed phosphorylation of Sae2 regulate different responses to DNA damage[J]. Nucleic Acids Res, 2019,47(21):11238-11249.
doi: 10.1093/nar/gkz814 |
[1] | WANG Guan-xi, LI Ya-shu, LI Yue-yue, CAO Yuan-yuan, YANG Meng-meng, ZHANG Mei-hua, WU Jing-yao, LIANG Cheng, LI Ju-lin, ZHOU Hua-yun, TANG Jian-xia, ZHU Guo-ding. Resistance to deltamethrin and knockdown resistance mutation in Aedes albopictus from Jiangsu Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(4): 468-474. |
[2] | Cheng-yun YANG, Su-hua LI, Ya-lan ZHANG, Rui-min ZHOU, Ying LIU, Dan QIAN, Yu-ling ZHAO, Bian-li XU, Hong-wei ZHANG, Yan DENG. Analysis of mutations of Plasmodium falciparum multidrug resistance gene 1 and K13 gene in imported Plasmodium falciparum in Henan Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(2): 97-102. |
[3] | Yi-ni TIAN, Run YE, Wei-qing PAN, Dong-mei ZHANG. Approaches to screening and identifying genes associated with drug-resistance of Plasmodium falciparum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(5): 495-498. |
[4] | SUN Ding-wei, WANG Shan-qing*, ZHUO Kai-Ren, ZENG Lin-hai, LI Shan-gan. Resistance of Anopheles sinensis to Three Common Insecticides in Hainan Province [J]. , 2014, 32(2): 17-127-129. |
[5] | ZHANG Yu-Qi, LIU Ji-Qi, GUO Xiang-Shu, TANG Zhen-Qiang, DIAO Xu-Dong, ZHOU Rui-Min, ZhAO Qi. Resistance of Anopheles sinensis to Insecticides in Huaibin County of Henan Province [J]. , 2012, 30(6): 18-493-495. |
[6] | LIU Ying,CHEN Jian-she,ZHOU Rui-min,QIAN Dan, CHEN Qing-wei,XU Bian-li,ZHANG Hong-wei. Investigation on the Sensitivity of Anopheles sinensis to Insecticide [J]. , 2012, 30(4): 12-309-311. |
[7] | CHENHong;FUZhi-qiang;CHENLei;QIUChun-hui;FUGuang-wei;LIYe;SHAODong-hua;FENGXin-gang*;LINJiao-jiao. Immune Protection of Tegument Protein rSj29 against Schistosoma japonicum in Mice [J]. , 2009, 27(6): 6-482. |
[8] | WUJia-hong;ZHAOTong-yan;DONGYan-de. Construction of Suppression Subtracted cDNA Library of Deltamethrin-resistant Aedes albopictus [J]. , 2006, 24(4): 10-284. |
[9] | ZhuChangliang;LiYulan;SunLixin;LiJianmin;GaoXiaohong;YeBinghui. GENETIC ANALYSIS OF DELTAMETHRIN RESISTANCE IN CULEX PIPIENS PALLENS [J]. , 1998, 16(1): 5-24. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 430
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||