中国寄生虫学与寄生虫病杂志 ›› 2017, Vol. 35 ›› Issue (5): 503-508.
收稿日期:
2017-04-05
出版日期:
2017-10-30
发布日期:
2018-01-08
通讯作者:
彭鸿娟
基金资助:
Received:
2017-04-05
Online:
2017-10-30
Published:
2018-01-08
Contact:
Hong-juan PENG
Supported by:
摘要:
近年来的研究表明,弓形虫感染小鼠细胞后,分泌的毒力蛋白——棒状体蛋白18(ROP18)能与免疫相关GTP酶(IRG)结合并使其发生磷酸化,致使IRG不能结合至纳虫泡膜上,纳虫泡不发生破裂,弓形虫得以在纳虫泡中生长增殖。此为弓形虫在小鼠细胞内实现免疫逃避的机制,但是弓形虫感染人细胞后的免疫逃避机制尚未明了。据报道,人细胞中泛素标记的纳虫泡能与内溶酶体系统融合,最终导致弓形虫因酸化而死亡。为此,本文综述了近年来弓形虫抑制宿主免疫功能,尤其是γ干扰素依赖的细胞免疫,以及弓形虫通过阻断泛素标记纳虫泡膜进而成功实现免疫逃避的研究进展。
中图分类号:
姚礼捷, 彭鸿娟. 弓形虫抑制γ干扰素依赖的宿主细胞免疫的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(5): 503-508.
Li-jie YAO, Hong-juan PENG. Research advances on the inhibition of interferon-γ-dependent cellular immunity by Toxoplasma gondii[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2017, 35(5): 503-508.
[1] | Montoya JG, Liesenfeld O.Toxoplasmosis[J]. Lancet, 2004, 363(9425): 1965-1976. |
[2] | Dubey JP, Lindsay DS, Speer CA.Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts[J]. Clin Microbiol Rev, 1998, 11(2): 267-299. |
[3] | 白晨倩, 王东, 姚志军, 等. 河南省HIV携带者刚地弓形虫感染情况[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(1): 84-86. |
[4] | Li XL, Wei HX, Zhang H, et al. A meta analysis on risks of adverse pregnancy outcomes in Toxoplasma gondii infection[J]. PLoS One, 2014, 9(5): e97775. |
[5] | 张居作, 陈汉忠, 徐君飞. 我国弓形虫的感染现状[J]. 动物医学进展, 2008, 29(7): 101-104. |
[6] | 杨培梁, 陈晓光. 弓形虫表观遗传学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 32(3): 228-232. |
[7] | Yap GS, Sher A.Effector cells of both nonhemopoietic and hemopoietic origin are required for interferon (IFN)-γ- and tumor necrosis factor (TNF)-α-dependent host resistance to the intracellular pathogen, Toxoplasma gondii[J]. J Exp Med, 1999, 189(7):1083-1092. |
[8] | Gazzinelli RT, Wysocka M, Hayashi S, et al. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii[J]. J Immuno, 1994, 153(6):2533-2543. |
[9] | Suzuki Y, Conley FK, Remington JS.Importance of endogenous IFN-gamma for prevention of toxoplasmic encephalitis in mice[J]. J Immuno, 1989, 143(6): 2045-2050. |
[10] | Däubener W, Posdziech V, Hadding U, et al. Inducible anti-parasitic effector mechanisms in human uroepithelial cells: tryptophan degradation vs. NO production[J]. Med Microbiol Immuno, 1999, 187(3): 143-147. |
[11] | Nagineni CN, Pardhasaradhi K, Martins MC, et al. Mechanisms of interferon-induced inhibition of Toxoplasma gondii replication in human retinal pigment epithelial cells[J]. Infect Immun, 1996, 64(10): 4188-4196. |
[12] | Aline F, Bout D, Dimierpoisson I.Dendritic cells as effector cells: gamma interferon activation of murine dendritic cells triggers oxygen-dependent inhibition of Toxoplasma gondii replication[J]. Infect Immun, 2002, 70(5): 2368-2374. |
[13] | Deckert-Schlüter M, Rang A, Weiner D, et al. Interferon-gamma receptor-deficiency renders mice highly susceptible to toxoplasmosis by decreased macrophage activation[J]. Lab invest, 1996, 75(6): 827-841. |
[14] | Gavrilescu LC, Butcher BA, Del RL, et al. STAT1 is essential for antimicrobial effector function but dispensable for gamma interferon production during Toxoplasma gondii infection[J]. Infect Immun, 2004, 72(3): 1257-1264. |
[15] | Lieberman LA, Banica M, Reiner SL, et al. STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis[J]. J Immun, 2004, 172(1): 457-463. |
[16] | Lüder CGK, Walter W, Beuerle B, et al. Toxoplasma gondii down-regulates MHC class Ⅱ gene expression and antigen presentation by murine macrophages via interference with nuclear translocation of STAT1 alpha[J]. Eur J Immunol, 2001, 31(5): 1475-1484. |
[17] | Shapira S, Harb OS, Margarit J, et al. Initiation and termination of NF-kappa B signaling by the intracellular protozoan parasite Toxoplasma gondii[J]. J Cell Sci, 2005, 118(15): 3501-3508. |
[18] | Hunter CA, Sibley LD.Modulation of innate immunity by Toxoplasma gondii virulence effectors[J]. Nat Rev Microbiol, 2012, 10(11): 766. |
[19] | Kim SK, Fouts AE, Boothroyd JC.Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling[J]. J Immun, 2007, 178(8): 5154-5165. |
[20] | Olias P, Etheridge RD, Zhang Y, et al. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression[J]. Cell Host Microbe, 2016, 20(1): 72-82. |
[21] | Rosowski EE, Nguyen QP, Camejo A, et al. Toxoplasma gondii inhibits gamma interferon (IFN-γ)- and IFN-β-induced host cell STAT1 transcriptional activity by increasing the association of STAT1 with DNA[J]. Infect Immun, 2014, 82(2): 706-719. |
[22] | Rosowski EE, Saeij JP.Toxoplasma gondii clonal strains all inhibit STAT1 transcriptional activity but polymorphic effectors differentially modulate IFN-γ induced gene expression and STAT1 phosphorylation[J]. PLoS One, 2012, 7(12): e51448. |
[23] | Schneider AG, Abdallah DSA, Butcher BA, et al. Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNγ-induced STAT1 transcriptional activity[J]. PLoS One, 2013, 8(3): e60215. |
[24] | Zimmermann S, Murray PJ, Heeg K, et al. Induction of suppressor of cytokine signaling-1 by Toxoplasma gondii contributes to immune evasion in macrophages by blocking IFN-gamma signaling[J]. J Immun, 2006, 176(3): 1840-1847. |
[25] | Lang C, Hildebrandt A, Brand F, et al. Impaired chromatin remodelling at STAT1-regulated promoters leads to global unresponsiveness of Toxoplasma gondii-Infected macrophages to IFN-γ[J]. PLoS Pathog, 2012, 8(1): e1002483. |
[26] | Lüder CG, Algner M, Lang C, et al. Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages[J]. Int J Parasitol, 2003, 33(8): 833-844. |
[27] | Lüder CG, Lang T, Beuerle B, et al. Down-regulation of MHC classⅡmolecules and inability to up-regulate classⅠmolecules in murine macrophages after infection with Toxoplasma gondii[J]. Clin Exp Immunol, 1998, 112(2): 308-316. |
[28] | Zhi L, Zhao ZJ, Zhu XQ, et al. Differences in iNOS and arginase expression and activity in the macrophages of rats are responsible for the resistance against T. gondii Infection[J]. PLoS One, 2012, 7(4): e35834. |
[29] | Murray HW, Cohn ZA.Macrophage oxygen-dependent antimicrobial activity.Ⅰ. Susceptibility of Toxoplasma gondii to oxygen intermediates[J]. J Exp Med, 1979, 150(4): 938-949. |
[30] | Howard JC, Hunn JP, Steinfeldt T.The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii[J]. Curr Opin Microbiol, 2011, 14(4): 414-421. |
[31] | Yamamoto M, Okuyama M, Ma JS, et al. A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii[J]. Immunity, 2012, 37(2): 302-313. |
[32] | Choi J, Park S, Biering SB, et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy[J]. Immunity, 2014, 40(6): 924-935. |
[33] | Ohshima J, Lee Y, Sasai M, et al. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii[J]. J Immun, 2014, 192(7): 3328-3335. |
[34] | Fentress SJ, Behnke MS, Dunay IR, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence[J]. Cell Host Microbe, 2010, 8(6): 484-495. |
[35] | Fentress SJ, Steinfeldt T, Howard JC, et al. The arginine-rich N-terminal domain of ROP18 is necessary for vacuole targeting and virulence of Toxoplasma gondii[J]. Cell Microbiol, 2012, 14(12): 1921-1933. |
[36] | Steinfeldt T, Könen-Waisman S, Tong L, et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii[J]. PLoS Biol, 2010, 8(12): e1000576. |
[37] | Clough B, Wright JD, Pereira PM, et al. K63-linked ubiquitination targets Toxoplasma gondii for endo-lysosomal destruction in IFN-γ-stimulated human cells[J]. PLoS Pathog, 2016, 12(11): e1006027. |
[38] | Niedelman W, Gold DA, Rosowski EE, et al. The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response[J]. PLoS Pathog, 2012, 8(6): e1002784. |
[39] | Pfefferkorn ER.Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan[J]. Proc Natl Acad Sci USA, 1984, 81(3): 908-912. |
[40] | Niedelman W, Sprokholt JK, Clough B, et al. Cell death of gamma interferon-stimulated human fibroblasts upon Toxoplasma gondii infection induces early parasite egress and limits parasite replication[J]. Infec Immun, 2013, 81(12): 4341-4349. |
[41] | Dimier IH, Bout DT.Inhibition of Toxoplasma gondii replication in IFN-gamma-activated human intestinal epithelial cells[J]. Immunol Cell Biol, 1997, 75(5): 511-514. |
[42] | Woodman JP, Dimier IH, Bout DT.Human endothelial cells are activated by IFN-gamma to inhibit Toxoplasma gondii replication. Inhibition is due to a different mechanism from that existing in mouse macrophages and human fibroblasts[J]. J Immun, 1991, 147(6): 2019-2023. |
[43] | Van Grol J, Muniz-Feliciano L, Portillo JA, et al. CD40 induces anti-Toxoplasma gondii activity in nonhematopoietic cells dependent on autophagy proteins[J]. Infect Immun, 2013, 81(6): 2002-2011. |
[44] | Selleck EM, Orchard RC, Lassen KG, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ-activated human cells[J]. MBio, 2014, 6(5): 1115-1157. |
[45] | Johnston AC, Piro A, Clough B, et al. Human GBP1 does not localize to pathogen vacuoles but restricts Toxoplasma gondii[J]. Cellr Microbiol, 2016, 18(8): e1056-1064. |
[46] | Qin A, Lai DH, Liu Q, et al. Guanylate-binding protein 1 (GBP1) contributes to the immunity of human mesenchymal stromal cells against Toxoplasma gondii[J]. Proc Natl Acad Sci USA, 2017, 114(6): 1365-1370. |
[47] | 崔霁欣. 致病细菌效应蛋白家族通过修饰泛素/NEDD8阻断宿主泛素化通路[D]. 北京: 北京协和医学院, 2010. |
[48] | Cui J, Yao Q, Li S, et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 by a bacterial effector family[J]. Science, 2011, 329(5996): 1215-1218. |
[49] | 李润花, 张铁娥, 殷国荣. 刚地弓形虫棒状体蛋白2家族作为疫苗候选分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(3): 222-227. |
[50] | Haldar AK, Foltz C, Finethy R, et al. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins[J]. Proc Natl Acad Sci USA, 2015, 112(41): 5628-5637. |
[51] | Taylor S, Barragan A, Su C, et al. A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii[J]. Science, 2006, 314(5806): 1776-1780. |
[52] | Zhou Y, Zhu Y.Diversity of bacterial manipulation of the host ubiquitin pathways[J]. Cell Microbiol, 2015, 17(1): 26-34. |
[53] | Robinson PA.Ubiquitin-protein ligases[J]. J Cell Sci, 2004, 117(22): 5191-5194. |
[54] | 夏菁, 彭鸿娟. 刚地弓形虫毒力调节因子研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(4): 297-300. |
[55] | Haldar AK, Piro AS, Finethy R, et al. Chlamydia trachomatis is resistant to inclusion ubiquitination and associated host defense in gamma interferon-primed human epithelial cells[J]. MBio, 2016, 7(6): e1416-e1417. |
[1] | 解晓曼, 孙航, 代莉莎, 朱文菊, 王利磊, 谢环环, 董宏杰, 张俊梅, 王琦, 周贝贝, 赵桂华, 徐超, 尹昆. 刚地弓形虫感染对小鼠脑组织转录本m6A甲基化修饰的影响[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 27-35. |
[2] | 郑广福, 刘现兵, 姜昱竹, 李新雨, 胡雪梅, 张海霞. 刚地弓形虫感染孕鼠胎盘组织中中性粒细胞和IL-17与不良妊娠结局的关系[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 48-54. |
[3] | 薛羽珊, 林萍, 程训佳, 冯萌. 慢性弓形虫感染对宿主中枢神经系统的损伤及其作用机制[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 527-531. |
[4] | 姜文静, 孟雅莉, 赵利娜, 王春苗, 张晓磊. 刚地弓形虫棒状体蛋白18和膜表面抗原30复合核酸疫苗对小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 532-538. |
[5] | 谭潇, 朱琪, 刘众齐, 李佳, 彭丁晋. 日本血吸虫Sj26gst mRNA候选疫苗的免疫原性研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 546-551. |
[6] | 赵紫琪, 吕芳丽. 蒿甲醚脂质体体外抑制刚地弓形虫增殖作用的研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 446-451. |
[7] | 张驰, 陈嘉婷, 辛紫萱, 杨莉莉, 杨梓瀚, 彭鸿娟. 弓形虫慢性感染小鼠脑转录组分析及与抑郁相关的犬尿氨酸通路的验证[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 270-278. |
[8] | 徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379. |
[9] | 杜鹃, 李佳, 吴迪, 余琦, 张玮, 白如念, 郭俊林, 刘庆斌, 雷琪莉, 谷传慧, 王萌, 赵浩军. 2022年北京市犬猫刚地弓形虫感染血清流行病学调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 389-392. |
[10] | 李佳铭, 王艺璇, 杨宁爱, 马慧慧, 兰敏, 刘春兰, 赵志军. 刚地弓形虫ROP16蛋白对MH-S细胞极化和凋亡的影响及其相关机制[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 579-586. |
[11] | 邹伟浩, 吴蔚玲, 廖远鹏, 陈敏, 彭鸿娟. 刚地弓形虫抗缓殖子期抗原1单克隆抗体的制备与应用[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 587-593. |
[12] | 代莉莎, 张丽新, 尹昆. 刚地弓形虫诱导宿主精神行为障碍的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 642-646. |
[13] | 王杰, 温红阳, 陈滢, 安然, 罗庆礼, 沈继龙, 都建. 刚地弓形虫巨噬细胞迁移抑制因子基因敲除虫株的构建与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 349-354. |
[14] | 王振勋, 熊思思, 孙夏慧, 王永亮, 潘格, 何深一, 丛华. 刚地弓形虫慢性感染小鼠脑组织中lncRNA102796的差异表达及其作用机制[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 187-193. |
[15] | 何威, 周必英. 感染蠕虫后宿主T细胞免疫应答相关信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 223-227. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||