[1] | Moro P,, Schantz PM. Echinococcosis: a review[J]. Int J Infect Dis, 2009, 13(2): 125-133. | [2] | Jenkins EJ,, Schurer JM,, Gesy KM. Old problems on a new playing field: helminth zoonoses transmitted among dogs, wildlife, and people in a changing northern climate[J]. Vet Parasitol, 2011, 182(1): 54-69. | [3] | Jin XL,, Guo XL,, Zhu DQ, et al. miRNA profiling in the mice in response to Echinococcus multilocularis infection[J]. Acta Trop, 2017, 166: 39-44. | [4] | Liu HD,, Wang HB,, Fan HN, et al. Alveolar echinococcosis and immune evasion[J]. Chin J Parasitol Parasit Dis, 2018, 36(6): 655-660. (in Chinese) | [4] | ( 刘寒冬,, 王宏宾,, 樊海宁, 等. 多房棘球蚴病的免疫逃避机制[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 655-660.) | [5] | Zhang MY,, Wu WP,, Guan YY, et al. Analysis on disease burden of hydatid disease in China[J]. Chin J Parasitol Parasit Dis, 2018, 36(1): 15-19, 25. (in Chinese) | [5] | ( 张梦媛,, 伍卫平,, 官亚宜, 等. 我国棘球蚴病疾病负担分析[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(1): 15-19, 25.) | [6] | He Z,, Yan TM,, Yuan Y, et al. miRNAs and lncRNAs in Echinococcus and echinococcosis[J]. Int J Mol Sci, 2020, 21(3): 730. | [7] | Wen H,, Vuitton L,, Tuxun T, et al. Echinococcosis: advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32(2): e00075-18. | [8] | Guo BP. Study on correlation between pathogenic differences and mitochondrial genetic markers in Echinococcus multilocularis[D]. Shihezi: Shihezi University, 2019: 1-5. (in Chinese) | [8] | ( 郭宝平. 多房棘球绦虫致病差异与线粒体遗传标志相关性的研究[D]. 石河子: 石河子大学, 2019: 1-5.) | [9] | Huang H,, Zhang SK. Research progress on mechanisms of infiltration and metastasis for the alveolar echinococcosis[J]. Chin J Zoonoses, 2016, 32(7): 670-673, 678. (in Chinese) | [9] | ( 黄红,, 张淑坤. 多房棘球蚴病的浸润和转移机制研究进展[J]. 中国人兽共患病学报, 2016, 32(7): 670-673, 678.) | [10] | Lou ZZ,, Li HM,, Yan HB, et al. Research advances in interplay of host immune mechanism and Echinococcus multilocularis metacestodes[J]. Chin J Parasitol Parasit Dis, 2012, 30(5): 401-405. (in Chinese) | [10] | ( 娄忠子,, 李宏民,, 闫鸿斌, 等. 多房棘球蚴感染与宿主相互作用的免疫学机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(5): 401-405.) | [11] | Yang JQ,, Zhou YH,, Singh RR. Effects of invariant NKT cells on parasite infections and hygiene hypothesis[J]. J Immunol Res, 2016, 2016: 2395645. | [12] | Yang J,, Chen XQ,, Wu JE, et al. Immunoregulation of mmu-miR-146a-5p on mouse macrophages[J]. Chin Vet Sci, 2019, 49(4): 506-511. (in Chinese) | [12] | ( 杨静,, 陈晓倩,, 吴金恩, 等. mmu-miR-146a-5p对小鼠巨噬细胞的免疫调节作用[J]. 中国兽医科学, 2019, 49(4): 506-511.) | [13] | Rusca N,, Monticelli S. miR-146a in immunity and disease[J]. Mol Biol Int, 2011, 2011: 437301. | [14] | Zheng YD,, Cai XP,, Bradley JE. microRNAs in parasites and parasite infection[J]. RNA Biol, 2013, 10(3): 371-379. | [15] | Li LH,, Wang W,, Hou XL, et al. Affects of Echinococcus multilocularis metacestode infection on the natural killer T cells and their subsets in mouse spleen[J]. Chin J Parasitol Parasit Dis, 2021, 39(3): 311-317. (in Chinese) | [15] | ( 李玲慧,, 王伟,, 侯昕伶, 等. 多房棘球蚴感染对小鼠脾自然杀伤T细胞及其亚群的影响[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 311-317.) | [16] | Li FR,, Shi YE,, Shi DZ, et al. Observation of lymphocyte from hosts with alveolar echinococcosis[J]. Chin J Zoonoses, 2003, 19(3): 91-94. (in Chinese) | [16] | ( 李富荣,, 石佑恩,, 史大中, 等. 泡状棘球蚴病宿主淋巴细胞的变化及意义[J]. 中国人兽共患病杂志, 2003, 19(3): 91-94.) | [17] | Vuitton DA,, Gottstein B. Echinococcus multilocularis and its intermediate host: a model of parasite-host interplay[J]. J Biomed Biotechnol, 2010, 2010: 923193. | [18] | Xu K,, Wang HJ,, Zhang L, et al. Research progress on the mechanisms underlying the impairment of host hepatocytes by Echinococcus multilocularis[J]. Chin J Parasitol Parasit Dis, 2021, 39(2): 256-260. (in Chinese) | [18] | ( 徐凯,, 王海久,, 张丽, 等. 多房棘球蚴对宿主肝细胞损害机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(2): 256-260.) | [19] | Zhang N,, Zhang CS,, Li ZD, et al. The effects of Echinococcus multilocularis protoscoleces infection on lymphocytes and their subpopulations in mouse liver and spleen[J]. Chin J Parasitol Parasit Dis, 2020, 38(1): 30-35. (in Chinese) | [19] | ( 章宁,, 张传山,, 李智德, 等. 多房棘球蚴感染对小鼠肝脾淋巴细胞及其亚群的影响[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(1): 30-35.) | [20] | Zhang YE. Immunoregulatory effects of emu-miR-71 and its application in anti-E. multilocularis metacestode infection[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021: 2-6). (in Chinese) | [20] | 张永娥. emu-miR-71的免疫调节作用及其在抗多房棘球蚴感染中的应用[D]. 北京: 中国农业科学院, 2021: 2-6). | [21] | Liu K,, Huang HB,, Yang GL. miRNA functions in parasite-related immune regulation in hosts[J]. Chin J Parasitol Parasit Dis, 2018, 36(4): 405-408. (in Chinese) | [21] | ( 刘可,, 黄海斌,, 杨桂连. miRNA在寄生虫宿主免疫调控中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4): 405-408.) | [22] | Ding JT,, He GT,, Wu JE, et al. miRNA-seq of Echinococcus multilocularis extracellular vesicles and immunomodulatory effects of miR-4989[J]. Front Microbiol, 2019, 10: 2707. | [23] | Cai MT,, Ding JT,, Li YT, et al. Echinococcus multilocularis infection induces UBE2N suppression via exosomal emu-miR-4989[J]. Acta Trop, 2021, 223: 106087. | [24] | Zhang CS,, Wang LM,, Ali T, et al. Hydatid cyst fluid promotes pericystic fibrosis in cystic echinococcosis by suppressing miR-19 expression[J]. Parasit Vectors, 2016, 9(1): 278. | [25] | He X,, Tang R,, Sun Y, et al. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis[J]. eBio Medicine, 2016, 13: 339-347. | [26] | Li YM,, Yu JF,, Wang F, et al. miR-150-5p regulate T cell activation in severe aplastic Anemia by targeting Bach2[J]. Cell Tissue Res, 2021, 384(2): 423-434. | [27] | Cao JP. The effect and mechanism of miR-150-5p on the IL-10, IL-1β via targeting IL-19 in macrophages[D]. Hengyang: University of South China, 2020: 16-18). (in Chinese) | [27] | 曹佳萍. miR-150-5p靶向作用IL-19影响巨噬细胞炎症因子IL-10和IL-1β的分泌[D]. 衡阳: 南华大学, 2020: 16-18). | [28] | Jiang F,, Li W,, Chen J, et al. Mechanism of down-regulation of mi R-150-5p inhibit apoptosis in diabetic nephropathy podocyte model in vitro through PI3K/AKT signaling pathway[J]. Chin J Integr Tradit West Nephrol, 2021, 22(3): 205-209. (in Chinese) | [28] | ( 江帆,, 李伟,, 陈娟, 等. 下调miR-150-5p调控PI3K/AKT信号通路抑制体外糖尿病肾病足细胞模型凋亡的机制研究[J]. 中国中西医结合肾病杂志, 2021, 22(3): 205-209.) | [29] | Leong JW,, Sullivan RP,, Fehniger TA. microRNA management of NK-cell developmental and functional programs[J]. Eur J Immunol, 2014, 44(10): 2862-2868. | [30] | Lu J,, Li S,, Li XP, et al. Declined miR-181a-5p expression is associated with impaired natural killer cell development and function with aging[J]. Aging Cell, 2021, 20(5): e13353. | [31] | Li M,, He Y,, Zhou Z, et al. microRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47 phox-oxidative stress pathway in neutrophils[J]. Gut, 2017, 66(4): 705-715. | [32] | Dorhoi A,, Iannaccone M,, Farinacci M, et al. microRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment[J]. J Clin Invest, 2013, 123(11): 4836-4848. | [33] | Gajeton J,, Krukovets I,, Yendamuri R, et al. miR-467 regulates inflammation and blood insulin and glucose[J]. J Cell Mol Med, 2021, 25(5): 2549-2562. | [34] | Liu K,, Huang HB,, Yang GL. miRNA functions in parasite-related immune regulation in hosts[J]. Chin J Parasitol Parasit Dis, 2018, 36(4): 405-408. (in Chinese) | [34] | ( 刘可,, 黄海斌,, 杨桂连. miRNA在寄生虫宿主免疫调控中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4): 405-408.) |
|