[1] | Wang LY, Wu WP. Natural factors of alveolar echinococcosis[J]. Chin J Zoonoses, 2009, 25(1):63-66. (in Chinese) | [1] | (王立英, 伍卫平. 泡球蚴病流行的自然因素[J]. 中国人兽共患病学报, 2009, 25(1):63-66.) | [2] | Eckert J, Gemmell MA, Meslin FX, et al. WHO/OIE manual on echinococcosis in human and animals: a public health problem of global concern[M]. Paris: World Organization for Animal Health, 2001: 1-17. | [3] | Holmes P. Investing to overcome the global impact of neglected tropical diseases[R]. Geneva: WHO, 2015, 7(4244):596-596. | [4] | Food and Agriculture Organization of the United Nations/World Health Organization. Multicriteria-based ranking for risk management of food borne parasites[R]. Rome: FAO Headquarters, 2012. | [5] | Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern[J]. Clin Microbiol Rev, 2004, 17(1):107-135. | [6] | Ammann RW, Eckert J. Cestodes. Echinococcus[J]. Gastroenterol Clin North Am, 1996, 25(3):655-689. | [7] | WHO Informal Working Group on Echinococcosis. Guidelines for treatment of cystic and alveolar echinococcosis in humans[J]. Bull World Health Organ, 1996, 74(3):231-242. | [8] | Kern P, Menezes da Silva A, Akhan O, et al. The echinococcoses: diagnosis, clinical management and burden of disease[J]. Adv Parasitol, 2017, 96:259-369. | [9] | Jura H, Bader A, Frosch M. In vitro activities of benzimidazoles against Echinococcus multilocularis metacestodes[J]. Antimicrob Agents Chemother, 1998, 42(5):1052-1056. | [10] | Reuter S, Jensen B, Buttenschoen K, et al. Benzimidazoles in the treatment of alveolar echinococcosis: a comparative study and review of the literature[J]. J Antimicrob Chemother, 2000, 46(3):451-456. | [11] | Reuter S, Buck A, Manfras B, et al. Structured treatment interruption in patients with alveolar echinococcosis[J]. Hepatology, 2004, 39(2):509-517. | [12] | Zhu WJ, Han XM, Guo YM. Progress in researches of benzimidazole in treatment of echinococcosis[J]. Chin J Schisto Control, 2017, 29(4):530-533. (in Chinese) | [12] | (朱文君, 韩秀敏, 郭亚民. 苯并咪唑类药物治疗包虫病研究进展[J]. 中国血吸虫病防治杂志, 2017, 29(4):530-533.) | [13] | Liu C, Yin J, Xue J, et al. In vitro effects of amino alcohols on Echinococcus granulosus[J]. Acta Trop, 2018, 182:285-290. | [14] | Brehm K, Kronthaler K, Jura H, et al. Cloning and characterization of beta-tubulin genes from Echinococcus multilocularis[J]. Mol Biochem Parasitol, 2000, 107(2):297-302. | [15] | Pierce RJ, Dubois-Abdesselem F, Lancelot J, et al. Targeting schistosome histone modifying enzymes for drug development[J]. Curr Pharm Des, 2012, 18(24):3567-3578. | [16] | Parker AL, Teo WS, McCarroll JA, et al. An emerging role for tubulin isotypes in modulating cancer biology and chemotherapy resistance[J]. Int J Mol Sci, 2017, 18(7):1434. | [17] | Nogales E. Structural insight into microtubule function[J]. Annu Rev Biophys Biomol Struct, 2001, 30:397-420. | [18] | Subramanian R, Kapoor TM. Building complexity: insights into self-organized assembly of microtubule-based architectures[J]. Dev Cell, 2012, 23(5):874-885. | [19] | Mao J, Wang D, Wang Z, et al. Combretastatin A-1 phosphate, a microtubule inhibitor, acts on both hepatocellular carcinoma cells and tumor-associated macrophages by inhibiting the Wnt/β-catenin pathway[J]. Cancer Lett, 2016, 380(1):134-143. | [20] | Liu M, Zhu YQ, Huang JF, et al. Ubiquitin-conjugating enzyme E2C regulates the progression of hepatocellular carcinoma by specifically binding to β-tubulin[J]. Acad J Second Mil Med Univ, 2021, 42(1):14-20. (in Chinese) | [20] | (刘梦, 朱怡卿, 黄金凤, 等. 泛素结合酶E2C通过特异性结合β-微管蛋白参与调控肝细胞癌进展[J]. 第二军医大学学报, 2021, 42(1):14-20.) | [21] | Froidevaux-Klipfel L, Poirier F, Boursier C, et al. Modulation of septin and molecular motor recruitment in the microtubule environment of the taxol-resistant human breast cancer cell line MDA-MB-231[J]. Proteomics, 2011, 11(19):3877-3886. | [22] | Kavallaris M, Kuo DY, Burkhart CA, et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes[J]. J Clin Invest, 1997, 100(5):1282-1293. | [23] | Banerjee A. Increased levels of tyrosinated alpha-, beta(Ⅲ)-, and beta(Ⅳ)-tubulin isotypes in paclitaxel-resistant MCF-7 breast cancer cells[J]. Biochem Biophys Res Commun, 2002, 293(1):598-601. | [24] | Tamura D, Arao T, Nagai T, et al. Slug increases sensitivity to tubulin-binding agents via the downregulation of βⅢ and βⅣα-tubulin in lung cancer cells[J]. Cancer Med, 2013, 2(2):144-154. | [25] | Kusel JR, McVeigh P, Thornhill JA. The schistosome excretory system: a key to regulation of metabolism, drug excretion and host interaction[J]. Trends Parasitol, 2009, 25(8):353-358. | [26] | Bahia D, Avelar LG, Vigorosi F, et al. The distribution of motor proteins in the muscles and flame cells of the Schistosoma mansoni miracidium and primary sporocyst[J]. Parasitology, 2006, 133(Pt 3):321-329. | [27] | Valverde-Islas LE, Arrangoiz E, Vega E, et al. Visualization and 3D reconstruction of flame cells of Taenia solium (Cestoda)[J]. PLoS One, 2011, 6(3):e14754. | [28] | Rohde K, Watson NA, Roubal FR. Ultrastructure of the protonephridial system of Anoplodiscus cirrusspiralis (Monogenea Monopisthocotylea)[J]. Int J Parasitol, 1992, 22(4):443-457. |
|