[1] | Fan XM,, Zhou BY. Research progress on the relationship between tapeworm excretion secretions and host immune effect[J]. Chin J Parasitol Parasit Dis, 2020, 38(1): 128-133. (in Chinese) | [1] | (范贤敏,, 周必英. 绦虫排泄分泌物与宿主免疫效应的相关研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(1):128-133.) | [2] | Fan XM,, Zhou BY. Research progress of T lymphocytes participate in the immune regulation of cysticercosis[J]. Chin J Endemiology, 2021, 40(2): 164-168. (in Chinese) | [2] | (范贤敏,, 周必英. T淋巴细胞参与囊虫病的免疫调控研究进展[J]. 中华地方病学杂志, 2021, 40(2): 164-168.) | [3] | Rajamanickam A,, Saravanan R,, Chandrakumar D, et al. Parasite antigen-specific regulation of Th1, Th2, and Th 17 responses in Strongyloides stercoralis infection[J]. J Immunol, 2015, 195(5): 2241-2250. | [4] | Zhu JF. T helper cell differentiation, heterogeneity, and plasticity[J]. Cold Spring Harb Perspect Biol, 2018, 10(10): a030338. | [5] | Wang H,, Hong W,, Yang X. Development of small molecule inhibitors targeting TGF-β ligand and receptor-structures, mechanism, preclinical studies and clinical usage[J]. Eur J Med Chem, 2020, 191: 112154. | [6] | Yu Y,, Shi JY,, Huang Z, et al. Research progress of TGF-β/Smad signaling pathway in liver fibrosis[J]. J Mudanjiang Med College, 2019, 40(5): 121-123. (in Chinese) | [6] | (于洋,, 史嘉翊,, 黄珍, 等. 肝纤维化中TGF-β/Smad信号通路研究进展[J]. 牡丹江医学院学报, 2019, 40(5): 121-123.) | [7] | Zhou Y,, Jin YB,, Wang JH, et al. Effects of Echinococcus granulosus sac fluid on the expression of Foxp3 and Smad4 genes in cultured mouse spleen cells in vitro[J]. J Pathogen Biol, 2011, 6(3): 193-196, 182. (in Chinese) | [7] | (周洋,, 金一帮,, 王俊华, 等. 细粒棘球蚴囊液对体外培养小鼠脾细胞Foxp3及Smad4基因表达的影响[J]. 中国病原生物学杂志, 2011, 6(3): 193-196, 182.) | [8] | Jin YB,, Zhou Y,, Wang JH, et al. The effect of hydatid cyst fluid on the expression of IL-17 and Smad2 in mouse splenocytes[J]. Biotechnology, 2011, 21(3): 43-47. (in Chinese) | [8] | (金一帮,, 周洋,, 王俊华, 等. 棘球蚴囊液对小鼠脾细胞IL-17及Smad2表达的影响[J]. 生物技术, 2011, 21(3): 43-47.) | [9] | Pang N,, Zhang F,, Ma X, et al. TGF-β/Smad signaling pathway regulates Th17/Treg balance during Echinococcus multilocularis infection[J]. Int Immunopharmacol, 2014, 20(1): 248-257. | [10] | Stager S,, Joshi T,, Bankoti R. Immune evasive mechanisms contributing to persistent Leishmania donovani infection[J]. Immunol Res, 2010, 47(1-3): 14-24. | [11] | Pourgholaminejad A,, Aghdami N,, Baharvand H, et al. Is TGFβ as an anti-inflammatory cytokine required for differentiation of inflammatory TH17 cells?[J]. J Immunotoxicol, 2016, 13(6): 775-783. | [12] | Yin S,, Chen X,, Zhang J, et al. The effect of Echinococcus granulosus on spleen cells and TGF-β expression in the peripheral blood of BALB/c mice[J]. Parasite Immunol, 2017, 39(3): e12415. | [13] | Abdelaziz MH,, Wang HX,, Cheng JJ, et al. Th2 cells as an intermediate for the differentiation of naive T cells into Th9 cells, associated with the Smad3/Smad4 and IRF4 pathwayt[J]. Exp Ther Med, 2020, 19(3): 1947-1954. | [14] | Wang A,, Pan D,, Lee YH, et al. Cutting edge: Smad2 and Smad4 regulate TGFβ-mediated Ⅱ 9 gene expression via EZH2 displacement[J]. J Immunol, 2013, 191(10): 4908-4912. | [15] | Pang N,, Zhang F,, Li S, et al. TGF-β/Smad signaling pathway positively up-regulates the differentiation of Interleukin-9-producing CD4+T cells in human Echinococcus granulosus infection[J]. J Infect, 2018, 76(4): 406-416. | [16] | Memon MA,, Naqvi MA,, Xin H, et al. Immunomodulatory dynamics of excretory and secretory products on Th9 immune response during Haemonchus contortus infection in goat[J]. PLoS Negl Trop Dis, 2020, 14(4): e0008218. | [17] | Cheng S,, Gao JM. A preliminary study on the biological characteristics of ICOS on regulatory T cells in the peripheral blood of healthy people[J]. Chin J Immunol, 2016, 32(12): 1753-1757. (in Chinese) | [17] | (程莎,, 高基民. ICOS在健康人外周血调节性T细胞上的生物学特征初探[J]. 中国免疫学杂志, 2016, 32(12): 1753-1757.) | [18] | Huang HC. Analysis and study of ICOS-ICOSL pathway and developmental proteins in Angiostrongylus cantonensis infection and immunity[D]. Suzhou: Suzhou University, 2013: 11-16. (in Chinese) | [18] | (黄慧聪. 广州管圆线虫感染免疫中ICOS-ICOSL通路及发育期蛋白的分析和研究[D]. 苏州:苏州大学, 2013: 11-16.) | [19] | Scales HE,, Ierna MX,, Gutierrez-Ramos JC, et al. Effect of inducible costimulator blockade on the pathological and protective immune responses induced by the gastrointestinal helminth Trichinella spiralis[J]. Eur J Immunol, 2004, 34(10): 2854-2862. | [20] | Zhang TZ,, Ma HH,, Zhang TT, et al. Relation between ICOS signaling and Th9 cell polarization in mice infected with Schistosoma japonicum[J]. Chin J Schisto Control, 2018, 30(4): 436-439. (in Chinese) | [20] | (战廷正,, 马会会,, 张婷婷, 等. ICOS信号与日本血吸虫感染小鼠Th9细胞极化的关系[J]. 中国血吸虫病防治杂志, 2018, 30(4): 436-439.) | [21] | Wang Y,, Xia CM. Dynamic alteration of CD154/CD40 and its effects on Th1/Th2 polarization in inducible co-stimulator ligand knockout mice infected with Schistosoma japonicum[J]. J Peking Univ (Health Sci), 2015, 47(6): 898-904. (in Chinese) | [21] | 王瑜,, 夏超明. 日本血吸虫感染可诱导共刺激分子配体基因敲除小鼠CD154和CD40动态变化及对Th1/Th2偏移的影响[J]. 北京大学学报(医学版), 2015, 47(6): 898-904.) | [22] | Wang B,, Liang S,, Wang Y, et al. Th17 down-regulation is involved in reduced progression of schistosomiasis fibrosis in ICOSL KO mice[J]. PLoS Negl Trop Dis, 2015, 9(1): e0003434. | [23] | Landuyt AE,, Klocke BJ,, Colvin TB, et al. Cutting edge: ICOS-deficient regulatory T Cells display normal induction of Ⅱ10 but readily downregulate expression of Foxp3[J]. JImmunol, 2019, 202(4): 1039-1044. | [24] | Redpath SA,, Nienke V,, Cervera AM, et al. ICOS controls Foxp3+regulatory T-cell expansion, maintenance and IL-10 production during helminth infection[J]. Eur J Immunol, 2013, 43(3): 705-715. | [25] | da Fonseca-Martins AM, de Souza Lima-Gomes P,, Antunes MM, et al. Leishmania parasites drive PD-L1 expression in mice and human neutrophils with suppressor capacity[J]. Front Immunol, 2021, 12: 598943. | [26] | Jubel JM,, Barbati ZR,, Burger C, et al. The role of PD-1 in acute and chronic infection[J], Front Immunol, 2020, 11: 487. | [27] | Rajamanickam A,, Munisankar S,, Dolla C, et al. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)- and programmed death 1 (PD-1)-mediated regulation of monofunctional and dual functional CD4+ and CD8+ T-cell responses in a chronic helminth infection[J]. Infect Immun, 2019, 87(12): e00469-19. | [28] | Cheng Y,, Zhu X,, Wang X, et al. Trichinella spiralis infection mitigates collagen-induced arthritis via programmed death 1-mediated immunomodulation[J]. Front Immunol, 2018, 9: 1566. | [29] | Zhao H,, Zhang FB,, Zhu YJ, et al. The expression of PD-1 in peripheral blood of patients with cystic echinococcosis on Treg cells and the expression of Foxp3, TGF-β and IL-10 correlation research[J]. Chin J Zoonoses, 2020, 36(6): 475-480. (in Chinese) | [29] | (赵慧,, 张峰波,, 朱玥洁, 等. 囊性包虫病患者外周血PD-1在Treg细胞上的表达与Foxp3、TGF-β和IL-10的相关性研究[J]. 中国人兽共患病杂志, 2020, 36(6): 475-480.) | [30] | Chen C,, Gao Q,, Luo Y, et al. The immunotherapy with hMASP-2 DNA nanolipoplexes against echinococcosis in experimentally protoscolex-infected mice[J]. Acta Trop, 2020, 210: 105579. | [31] | Jiang HY. Pathological study of PD-1/PD-L1 mediated immune escape in hepatic alveolar hydatid disease[D]. Xining:Qinghai University, 2020: 14-20. (in Chinese) | [31] | (姜宏猷. PD-1/PD-L1介导的免疫逃逸在肝泡型包虫病中的病理学研究[D]. 西宁:青海大学, 2020: 14-20.) | [32] | La X,, Zhang F,, Li Y, et al. Upregulation of PD-1 on CD4+CD25+ T cells is associated with immunosuppression in liver of mice infected with Echinococcus multilocularis[J]. Int Immunopharmacol, 2015, 26(2): 357-366. | [33] | Wang J,, Jebbawi F,, Bellanger AP, et al. Immunotherapy of alveolar echinococcosis via PD-1/PD-L1 immune check point blockade in mice[J]. Parasite Immunol, 2018, 40(12): e12596. | [34] | Zhou S,, Jin X,, Li Y, et al. Blockade of PD-1 signaling enhances Th2 cell responses and aggravates liver immunopathology in mice with Schistosomiasis japonica[J]. PLoS Negl Trop Dis, 2016, 10(10): e0005094. | [35] | Ordeix L,, Montserrat-Sangrà S,, Martínez-Orellana P, et al. Toll-like receptors 2, 4 and 7, interferon-gamma and interleukin 10, and programmed death ligand 1 transcripts in skin from dogs of different clinical stages of leishmaniosis[J]. Parasit Vectors, 2019, 12(1): 575. | [36] | Chen J,, Zhao CM,, Liu G, et al. Application research progress of TLRs/MyD88 signal transduction pathway[J]. Cont Med Edu, 2019, 33(5): 135-137. (in Chinese) | [36] | (陈晶,, 赵承梅,, 刘刚, 等. TLRs/MyD88信号转导通路的应用研究进展[J]. 继续医学教育, 2019, 33(5): 135-137.) | [37] | Kong DL,, Zhang Y,, Zhang YZ, et al. Effect of TLR2 signal on helper T cell differentiation in mice infected with Clonorchis sinensis[J]. Immunol J, 2019, 35(12): 1055-1060. (in Chinese) | [37] | (孔德龙,, 张钰,, 张雨钊, 等. 华支睾吸虫感染鼠TLR2信号对辅助性T细胞分化的作用[J]. 免疫学杂志, 2019, 35(12): 1055-1060.) | [38] | Gao Y,, Chen L,, Hou M, et al. TLR2 directing PD-L2 expression inhibit T cells response in Schistosoma japonicum infection[J]. PLoS One, 2013, 8(12): e82480. | [39] | Loures FV,, Pina A,, Felonato M, et al. Toll-like receptor 4 signaling leads to severe fungal infection associated with enhanced proinflammatory immunity and impaired expansion of regulatory T cells[J]. Infect Immun, 2010, 78(3): 1078-1088. | [40] | Raetz M,, Hwang SH,, Wilhelm CL, et al. Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN-γ-dependent elimination of Paneth cells[J]. Nature Immunology, 2013, 14(2): 136-142. | [41] | Reynolds JM,, Martinez GJ,, Chung Y, et al. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation[J]. Proc Natl Acad Sci USA, 2012, 109(32): 13064-13069. | [42] | Zhang M,, Gao Y,, Du X, et al. Toll-like receptor (TLR) 2 and TLR4 deficiencies exert differential in vivo effects against Schistosoma japonicum[J]. Parasite Immunol, 2011, 33(4): 199-209. | [43] | Verma A,, Prasad KN,, Cheekatla SS, et al. Immune response in symptomatic and asymptomatic neurocysticercosis[J]. Med Microbiol Immunol, 2011, 200(4): 255-261. | [44] | Yan C,, Wu J,, Xu N, et al. TLR4 deficiency exacerbates biliary injuries and peribiliary fibrosis caused by Clonorchis sinensis in a resistant mouse strain[J]. Front Cell Infect Microbiol, 2021, 10: 526997. | [45] | LaRosa DF,, Stumhofer JS,, Gelman AE, et al. T cell expression of MyD88 is required for resistance to Toxoplasma gondii[J]. Proc Natl Acad Sci USA, 2008, 105(10): 3855-3860. | [46] | Scalfone LK,, Nel HJ,, Gagliardo LF, et al. Participation of MyD88 and interleukin-33 as innate drivers of Th2 immunity to Trichinella spiralis[J]. Infect Immun, 2013, 81(4): 1354-1363. |
|