[1] | Pappas G, Roussos N, Falagas ME. Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis[J]. Int J Parasitol, 2009, 39(12):1385-1394. | [2] | Jones JL, Kruszon-Moran D, Rivera HN, et al. Toxoplasma gondii seroprevalence in the United States 2009—2010 and comparison with the past two decades[J]. Am J Trop Med Hyg, 2014, 90(6):1135-1139. | [3] | Zhou P, Chen Z, Li HL, et al. Toxoplasma gondii infection in humans in China[J]. Parasit Vectors, 2011, 4:165. | [4] | Xu LQ, Chen YD, Sun FH, et al. A national survey on current status of the important parasitic diseases in human population[J]. Chin J Parasitol Parasit Dis, 2005, 23(S1):332-340. (in Chinese) | [4] | (许隆祺, 陈颖丹, 孙凤华, 等. 全国人体重要寄生虫病现状调查报告[J]. 中国寄生虫学与寄生虫病杂志, 2005, 23(S1):332-340.) | [5] | Montoya JG, Liesenfeld O. Toxoplasmosis[J]. Lancet, 2004, 363(9425):1965-1976. | [6] | Liu JF, Lyu FL. Research progress of pulmonary toxoplasmosis[J]. J Trop Med, 2014, 14(4):541-544. (in Chinese) | [6] | (刘晋锋, 吕芳丽. 肺弓形虫病研究进展[J]. 热带医学杂志, 2014, 14(4):541-544.) | [7] | Ramos JM, Milla A, Rodríguez JC, et al. Seroprevalence of Toxoplasma gondii infection among immigrant and native pregnant women in Eastern Spain[J]. Parasitol Res, 2011, 109(5):1447-1452. | [8] | Howe DK, Sibley LD. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease[J]. J Infect Dis, 1995, 172(6):1561-1566. | [9] | Wang L, Shen JL. Research progress on genotype and genotype-associated pathogenesis of Toxoplasma gondii[J]. Chin J Parasitol Parasit Dis, 2013, 31(4):319-324. (in Chinese) | [9] | (王林, 沈继龙. 刚地弓形虫基因型和与基因型相关的致病机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(4):319-324.) | [10] | Shen JL, Wang L. Genotypes and main effectors of Toxoplasma gondii and their pathogenic mechanisms[J]. Chin J Parasitol Parasit Dis, 2015, 33(6):429-435. (in Chinese) | [10] | (沈继龙, 王林. 弓形虫的基因型及其主要效应分子的致病机制[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(6):429-435.) | [11] | Chen ZW, Gao JM, Huo XX, et al. Genotyping of Toxoplasma gondii isolates from cats in different geographic regions of China[J]. Vet Parasitol, 2011, 183(1/2):166-170. | [12] | Paulus GL, Xavier RJ. Autophagy and checkpoints for intracellular pathogen defense[J]. Curr Opin Gastroenterol, 2015, 31(1):14-23. | [13] | Subauste CS. Autophagy as an antimicrobial strategy[J]. Expert Rev Anti Infect Ther, 2009, 7(6):743-752. | [14] | Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1):27-42. | [15] | Lei ZH, Wang J, Liu CH. Research progress of regulatory roles and mechanisms of autophagy in anti-infection immunity[J]. Chin J Immunol, 2020, 36(12):1409-1418. (in Chinese) | [15] | (雷泽慧, 汪静, 刘翠华. 自噬在抗感染免疫中的作用机制研究进展[J]. 中国免疫学杂志, 2020, 36(12):1409-1418.) | [16] | Hurley JH, Schulman BA. Atomistic autophagy: the structures of cellular self-digestion[J]. Cell, 2014, 157(2):300-311. | [17] | Galluzzi L, Pietrocola F, Levine B, et al. Metabolic control of autophagy[J]. Cell, 2014, 159(6):1263-1276. | [18] | Choi J, Park S, Biering SB, et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy[J]. Immunity, 2014, 40(6):924-935. | [19] | Selleck EM, Orchard RC, Lassen KG, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ-activated human cells[J]. mBio, 2015, 6(5):e01157-15. | [20] | Yang ZS, Hou YH, Hao TF, et al. A human proteome array approach to identifying key host proteins targeted by Toxoplasma kinase ROP18[J]. Mol Cell Proteomics, 2017, 16(3):469-484. | [21] | Wei F, Wang W, Liu Q. Protein kinases of Toxoplasma gondii: functions and drug targets[J]. Parasitol Res, 2013, 112(6):2121-2129. | [22] | Martens S, Parvanova I, Zerrahn J, et al. Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases[J]. PLoS Pathog, 2005, 1(3):e24. | [23] | Zhao YL, Ferguson DJ, Wilson DC, et al. Virulent Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within primed macrophages[J]. J Immunol, 2009, 182(6):3775-3781. | [24] | Park S, Choi J, Biering SB, et al. Targeting by AutophaGy proteins (TAG): targeting of IFNG-inducible GTPases to membranes by the LC3 conjugation system of autophagy[J]. Autophagy, 2016, 12(7):1153-1167. | [25] | Ohshima J, Lee Y, Miwa SS, et al. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii[J]. J Immunol, 2014, 192(7):3328-3335. | [26] | Sasai MW, Sakaguchi N, Ma JS, et al. Essential role for GABARAP autophagy proteins in interferon-inducible GTPase-mediated host defense[J]. Nat Immunol, 2017, 18(8):899-910. | [27] | Krishnamurthy S, Konstantinou EK, Young LH, et al. The human immune response to Toxoplasma: autophagy versus cell death[J]. PLoS Pathog, 2017, 13(3):e1006176. | [28] | Bhushan J, Radke JB, Perng YC, et al. ISG15 connects autophagy and IFN-γ-dependent control of Toxoplasma gondii infection in human cells[J]. mBio, 2020, 11(5):e00852-20. | [29] | Clough B, Wright JD, Pereira PM, et al. K63-linked ubiquitination targets Toxoplasma gondii for endo-lysosomal destruction in IFNγ-stimulated human cells[J]. PLoS Pathog, 2016, 12(11):e1006027. | [30] | van Kooten C, Banchereau J. CD40-CD40 ligand[J]. J Leukoc Biol, 2000, 67(1):2-17. | [31] | Subauste CS, Wessendarp M, Sorensen RU, et al. CD40-CD40 ligand interaction is central to cell-mediated immunity against Toxoplasma gondii: patients with hyper IgM syndrome have a defective type 1 immune response that can be restored by soluble CD40 ligand trimer[J]. J Immunol, 1999, 162(11):6690-6700. | [32] | Reichmann G, Walker W, Villegas EN, et al. The CD40/CD40 ligand interaction is required for resistance to toxoplasmic encephalitis[J]. Infect Immun, 2000, 68(3):1312-1318. | [33] | Portillo JA, Okenka G, Reed E, et al. The CD40-autophagy pathway is needed for host protection despite IFN-Γ-dependent immunity and CD40 induces autophagy via control of P21 levels[J]. PLoS One, 2010, 5(12):e14472. | [34] | Portillo JC, Van Grol J, Saffo S, et al. CD40 in endothelial cells restricts neural tissue invasion by Toxoplasma gondii[J]. Infect Immun, 2019, 87(8):e00868-18. | [35] | Liu E, Lopez Corcino Y, Portillo JA, et al. Identification of signaling pathways by which CD40 stimulates autophagy and antimicrobial activity against Toxoplasma gondii in macrophages[J]. Infect Immun, 2016, 84(9):2616-2626. | [36] | Ogolla PS, Portillo JA, White CL, et al. The protein kinase double-stranded RNA-dependent (PKR) enhances protection against disease cause by a non-viral pathogen[J]. PLoS Pathog, 2013, 9(8):e1003557. | [37] | Yu YH, Zhao N, An JQ, et al. CCAAT/enhancer-binding protein β mediates the killing of Toxoplasma gondii by inducing autophagy in nonhematopoietic cells[J]. DNA Cell Biol, 2017, 36(3):212-218. | [38] | Hu W, Chan H, Lu L, et al. Autophagy in intracellular bacterial infection[J]. Semin Cell Dev Biol, 2020, 101:41-50. | [39] | Muniz-Feliciano L, Van Grol J, Portillo JA, et al. Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite[J]. PLoS Pathog, 2013, 9(12):e1003809. | [40] | Lopez Corcino Y, Gonzalez Ferrer S, Mantilla LE, et al. Toxoplasma gondii induces prolonged host epidermal growth factor receptor signalling to prevent parasite elimination by autophagy: perspectives for in vivo control of the parasite[J]. Cell Microbiol, 2019, 21(10):e13084. | [41] | Portillo JC, Muniz-Feliciano L, Lopez Corcino Y, et al. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy[J]. PLoS Pathog, 2017, 13(10):e1006671. | [42] | Bando H, Sakaguchi N, Lee Y, et al. Toxoplasma effector TgIST targets host IDO1 to antagonize the IFN-γ-induced anti-parasitic response in human cells[J]. Front Immunol, 2018, 9:2073. | [43] | Coppens I. How Toxoplasma and malaria parasites defy first, then exploit host autophagic and endocytic pathways for growth[J]. Curr Opin Microbiol, 2017, 40:32-39. | [44] | Gao DM, Zhang J, Zhao J, et al. Autophagy activated by Toxoplasma gondii infection in turn facilitates Toxoplasma gondii proliferation[J]. Parasitol Res, 2014, 113(6):2053-2058. | [45] | Pernas L, Bean C, Boothroyd JC,, et al. Mitochondria restrict growth of the intracellular parasite Toxoplasma gondii by limiting its uptake of fatty acids[J]. Cell Metab, 2018, 27(4):886-897.e4. | [46] | Zhu W, Li J, Pappoe F, et al. Strategies developed by Toxoplasma gondii to survive in the host[J]. Front Microbiol, 2019, 10:899. |
|