[1]
|
Li L, Qian J, Zhou Y, et al. Domestic mite-induced allergy: Causes, diagnosis, and future prospects[J]. Int J Immunopathol Pharmacol, 2018, 32: 2058738418804095.
|
[2]
|
Zhou Y, Yang SD, Lin Q, et al. Frequent presence of major dust mite allergens in human digestive tissues of children with gastritis[J]. Allergy, 2023, 78(2): 590-592.
|
[3]
|
Kim G, Hong M, Kashif A, et al. Der f 38 is a novel TLR4-binding allergen related to allergy pathogenesis from Dermatophagoides farinae[J]. Int J Mol Sci, 2021, 22(16): 8440.
|
[4]
|
王争艳, 张洁, 张闪, 等. 共生微生物对昆虫脂质代谢的影响[J]. 微生物学报, 2025, 65(2): 505-514.
|
|
Wang ZY, Zhang J, Zhang S, et al. Effects of microbial symbionts on lipid metabolism in insects[J]. Acta Microbiol Sin, 2025, 65(2): 505-514. (in Chinese)
|
[5]
|
Klimov PB, Hubert J, Erban T, et al. Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q)[J]. Int J Parasitol, 2024, 54(13): 661-674.
|
[6]
|
Hubert J, Nesvorna M, Klimov PB, et al. Interactions of the intracellular bacterium Cardinium with its host, the house dust mite Dermatophagoides farinae, based on gene expression data[J]. mSystems, 2021, 6(6): e0091621.
|
[7]
|
Woo C, Bhuiyan MIU, Kim D, et al. DNA metabarcoding-based study on bacteria and fungi associated with house dust mites (Dermatophagoides spp.) in settled house dust[J]. Exp Appl Acarol, 2022, 88(3/4): 329-347.
|
[8]
|
Odetoyin B, Adeola B, Olaniran O. Frequency and antimicrobial resistance patterns of bacterial species isolated from the body surface of the housefly (Musca domestica) in akure, ondo state, Nigeria[J]. J Arthropod Borne Dis, 2020, 14(1): 88-96.
|
[9]
|
Cenci-Goga BT, Sechi PL, Karama M, et al. Cross-sectional study to identify risk factors associated with the occurrence of antimicrobial resistance genes in honey bees (Apis mellifera) in Umbria, Central Italy[J]. Environ Sci Pollut Res Int, 2020, 27(9): 9637-9645.
|
[10]
|
Gwenzi W, Chaukura N, Muisa-Zikali N, et al. Insects, rodents, and pets as reservoirs, vectors, and sentinels of antimicrobial resistance[J]. Antibiotics (Basel), 2021, 10(1): 68.
|
[11]
|
Aljohani A, Clarke D, Byrne M, et al. The bacterial microbiome and resistome of house dust mites in Irish homes[J]. Sci Rep, 2024, 14(1): 19621.
|
[12]
|
Gätjens-Boniche O, Jiménez-Madrigal JP, Whetten RW, et al. Microbiome and plant cell transformation trigger insect gall induction in cassava[J]. Front Plant Sci, 2023, 14: 1237966.
|
[13]
|
Wang YT, Shen RX, Xing D, et al. Metagenome sequencing reveals the midgut microbiota makeup of Culex pipiens quinquefasciatus and its possible relationship with insecticide resistance[J]. Front Microbiol, 2021, 12: 625539.
|
[14]
|
Djihinto OY, Medjigbodo AA, Gangbadja ARA, et al. Malaria-transmitting vectors microbiota: Overview and interactions with anopheles mosquito biology[J]. Front Microbiol. 2022, 13: 891573.
|
[15]
|
Cull B, Burkhardt NY, Wang XR, et al. The Ixodes scapularis symbiont rickettsia buchneri inhibits growth of pathogenic rickettsiaceae in tick cells: Implications for vector competence[J]. Front Vet Sci, 2022, 8: 748427.
|
[16]
|
Samaddar S, Marnin L, Butler LR, et al. Immunometabolism in arthropod vectors: Redefining interspecies relationships[J]. Trends Parasitol, 2020, 36(10): 807-815.
|
[17]
|
高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 164-176.
|
|
Gao C, Guo LD. Progress on microbial species diversity, community assembly and functional traits[J]. Biodivers Sci, 2022, 30(10): 164-176. (in Chinese)
|
[18]
|
张云骅, 李建洪, 万虎. 昆虫共生菌与宿主的解毒代谢关系研究进展[J]. 农药学学报, 2019, 21(5): 729-735.
|
|
Zhang YH, Li JH, Wan H. Research progress on the relationship between host detoxification metabolism and insect microbial symbionts[J]. Chin J Pestic Sci, 2019, 21(5): 729-735. (in Chinese)
|
[19]
|
Jian ZH, Zeng L, Xu TJ, et al. Antibiotic resistance genes in bacteria: Occurrence, spread, and control[J]. J Basic Microbiol, 2021, 61(12): 1049-1070.
|
[20]
|
Sun YG, Zhang SS, Nie QX, et al. Gut firmicutes: Relationship with dietary fiber and role in host homeostasis[J]. Crit Rev Food Sci Nutr, 2023, 63(33): 12073-12088.
|
[21]
|
Jordan CKI, Brown RL, Larkinson MLY, et al. Symbiotic firmicutes establish mutualism with the host via innate tolerance and resistance to control systemic immunity[J]. Cell Host Microbe, 2023, 31(9): 1433-1449.e9.
|
[22]
|
Han B, Pan G, Weiss LM. Microsporidiosis in humans[J]. Clin Microbiol Rev, 2021, 34(4): e0001020.
|
[23]
|
Egidi E, Delgado-Baquerizo M, Plett JM, et al. A few Ascomycota taxa dominate soil fungal communities worldwide[J]. Nat Commun, 2019, 10(1): 2369.
|
[24]
|
Nweze JE, Schweichhart JS, Angel R. Viral communities in millipede guts: Insights into the diversity and potential role in modulating the microbiome[J]. Environ Microbiol, 2024, 26(2): e16586.
|
[25]
|
Opriessnig T, Xiao CT, Mueller NJ, et al. Emergence of novel circoviruses in humans and pigs and their possible importance for xenotransplantation and blood transfusions[J]. Xenotransplantation, 2024, 31(2): e12842.
|
[26]
|
Xiong Q, Sopko B, Klimov PB, et al. A novel Bartonella-like bacterium forms an interdependent mutualistic symbiosis with its host, the stored-product mite Tyrophagus putrescentiae[J]. mSystems, 2024, 9(3): e0082923.
|
[27]
|
周小倩, 马杰, 王睿怡, 等. 基于高通量测序的粉尘螨体内细菌多样性研究[J]. 中国血吸虫病防治杂志, 2022, 34(6): 630-634.
|
|
Zhou XQ, Ma J, Wang RY, et al. Bacterial community diversity in Dermatophagoides farinae using high-throughput sequencing[J]. Chin J Schisto Control, 2022, 34(6): 630-634. (in Chinese)
|
[28]
|
Huang QY, Chen J, Pan GQ, et al. Screening of the pandemic response box identifies anti-microsporidia compounds[J]. PLoSNegl Trop Dis, 2023, 17(12): e0011806.
|
[29]
|
Lin JL, Chen DS, Guan LX, et al. House dust mite exposure enhances immune responses to ovalbumin-induced intestinal allergy[J]. Sci Rep, 2022, 12(1): 5216.
|
[30]
|
Han SC, Akhtar MR, Xia XF. Functions and regulations of insect gut bacteria[J]. Pest Manag Sci, 2024, 80(10): 4828-4840.
|
[31]
|
Zhang YF, Yu WB, Lu Y, et al. Epigenetic regulation of fungal secondary metabolism[J]. J Fungi (Basel), 2024, 10(9): 648.
|
[32]
|
Nagare M, Ayachit M, Agnihotri A, et al. Glycosyltransferases: The multifaceted enzymatic regulator in insects[J]. Insect Mol Biol, 2021, 30(2): 123-137.
|
[33]
|
刘啸尘, 刘护, 张良, 等. 细胞代谢过程中的酶促糖基化及其功能[J]. 中国生物工程杂志, 2018, 38(1): 69-77.
|
|
Liu XC, Liu H, Zhang L, et al. Enzymatic glycosylation and its function in metabolic process of cells[J]. China Biotechnol, 2018, 38(1): 69-77. (in Chinese)
|
[34]
|
Blake KS, Xue YP, Gillespie VJ, et al. The tetracycline resistome is shaped by selection for specific resistance mechanisms by each antibiotic generation[J]. Nat Commun, 2025, 16(1): 1452.
|
|