[1] | Moore BW, Perez VJ, Gehring M.Assay and regional distribution of a soluble protein characteristic of the nervous system[J]. J Neurochem, 1968, 15(4): 265-272. | [2] | Wang T, Xue L, Ji X, et al. Cloning and characterization of the 14-3-3 protein gene from the halotolerant alga Dunaliella salina[J]. Mol Med Rep, 2009, 36(1): 207-214. | [3] | Mhawech P.14-3-3 proteins-|an update[J]. Cell Res, 2005, 15(4): 228-236. | [4] | Morrison D.14-3-3: modulators of signaling proteins?[J]. Science, 1994, 266(5182): 56-57. | [5] | Peng CY, Graves PR, Thoma RS, et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216[J]. Science, 1997, 277(5331): 1501-1505. | [6] | Freed E, Symons M, Macdonald SG, et al. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation[J]. Science, 1994, 265(5179): 1713-1716. | [7] | Riou P, Kjær S, Garg R, et al. 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins[J]. Cell, 2013, 153(3): 640-653. | [8] | Pozuelorubio M.14-3-3 Proteins are regulators of autophagy[J]. Cells, 2012, 1(4): 754-773. | [9] | Lim GE, Albrecht T, Piske M, et al. 14-3-3ζ coordinates adipogenesis of visceral fat[J]. Nat Commun, 2015, 6: 7671. | [10] | Phan L, Chou PC, Velazqueztorres G, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming[J]. Nat Commun, 2015, 6: 7530. | [11] | Alkhedery B, Barnwell JW, Galinski MR.Stage-specific expression of 14-3-3 in asexual blood-stage Plasmodium[J]. Mol Biochem Parasit, 1999, 102(1): 117-130. | [12] | Koyama T, Ohsawa T, Shimada S, et al. A 14-3-3 protein homologue is expressed in feline enteroepithelial-stages of Toxoplasma gondii[J]. Vet Parasitol, 2001, 96(1): 65-74. | [13] | Lally NC, Jenkins MC, Dubey JP.Development of a polymerase chain reaction assay for the diagnosis of neosporosis using the Neospora caninum 14-3-3 gene[J]. Mol Biochem Parasit, 1996, 75(2): 169-178. | [14] | Wang W, Shakes DC.Molecular evolution of the 14-3-3 protein family[J]. J Mol Evol, 1996, 43(4): 384. | [15] | Benz C, Engstler M, Hillmer S, et al. Depletion of 14-3-3 proteins in bloodstream-form Trypanosoma brucei, inhibits variant surface glycoprotein recycling[J]. Int J Parasitol, 2010, 40(5): 629-634. | [16] | Inoue M, Nakamura Y, Yasuda K, et al. The 14-3-3 Proteins of Trypanosoma brucei function in motility, cytokinesis, and cell cycle[J]. J Biol Chem, 2005, 280(14): 14085-14096. | [17] | Porcel BM, Tran AN, Tammi M, et al. Gene survey of the pathogenic protozoan Trypanosoma cruzi[J]. Genome Res, 2000, 10(8): 1103. | [18] | Lalle M, Salzano AM, Crescenzi M, et al. The Giardia duodenalis 14-3-3 protein is post-translationally modified by phosphorylation and polyglycylation of the C-terminal tail[J]. J Biol Chem, 2006, 281(8): 5137-5148. | [19] | Mcgonigle S, Beall MJ, Feeney EL, et al. Conserved role for 14-3-3 downstream of type I TGFβ receptors[J]. Febs Lett, 2001, 490(1/2): 65-69. | [20] | Mcgonigle S, Loschiavo M, Pearce EJ.14-3-3 proteins in Schistosoma mansoni: identification of a second epsilon isoform[J]. Int J Parasitol, 2002, 32(6): 685-693. | [21] | Zhang Y, Bickle QD, Taylor MG.Cloning of Schistosoma japonicum 14-3-3 epsilon (Sj14-3-3 epsilon), a new member of the 14-3-3 family of proteins from schistosomes[J]. Int J Parasitol, 2000, 30(9): 991-994. | [22] | Zhang Y, Taylor MG, Mccrossan MV, et al. Molecular cloning and characterization of a novel Schistosoma japonicum “irradiated vaccine-specific” antigen, Sj14-3-3[J]. Mol Biochem Parasit, 1999, 103(1): 25. | [23] | Wang X, Chen W, Li X, et al. Identification and molecular characterization of a novel signaling molecule 14-3-3 epsilon in Clonorchis sinensis excretory/secretory products[J]. Parasitol Res, 2012, 110(4): 1411-1420. | [24] | Siles-Lucas M, Nunes CP, Zaha A.Comparative analysis of the 14-3-3 gene and its expression in Echinococcus granulosus and Echinococcus multilocularis metacestodes[J]. Parasitology, 2001, 122(3): 281-287. | [25] | Fernández C, Gregory WF, Loke P, et al. Full-length-enriched cDNA libraries from Echinococcus granulosus contain separate populations of oligo-capped and trans-spliced transcripts and a high level of predicted signal peptide sequences[J]. Mol Biochem Parasit, 2002, 122(2): 171-180. | [26] | Sileslucas M, Felleisen RS, Hemphill A, et al. Stage-specific expression of the 14-3-3 gene in Echinococcus multilocularis[J]. Mol Biochem Parasit, 1998, 91(2): 281. | [27] | Schechtman D, Tarrabhazdai R, Arnon R.The 14-3-3 protein as a vaccine candidate against schistosomiasis[J]. Parasite Immunol, 2001, 23(4): 213-217. | [28] | Nunes CP, Zaha A, Gottstein B, et al. 14-3-3 gene characterization and description of a second 14-3-3 isoform in both Echinococcus granulosus and E. multilocularis[J]. Parasitol Res, 2004, 93(5): 403-409. | [29] | Jaubert S, Ledger TN, Laffaire JB, et al. Direct identification of stylet secreted proteins from root-knot nematodes by a proteomic approach[J]. Mol Biochem Parasit, 2002, 121(2): 205-211. | [30] | Tzivion G, Luo Z, Avruch J.A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity[J]. Nature, 1998, 394(6688): 88-92. | [31] | Fiorillo A, Di MD, Bertuccini L, et al. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference[J]. PLoS One, 2014, 9(3): e92902. | [32] | Teichmann A, Vargas DM, Monteiro KM, et al. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage[J]. J Proteome Res, 2015, 14(4): 1700-1715. | [33] | Dastidar EG, Dzeyk K, Krijgsveld J, et al. Comprehensive histone phosphorylation analysis and identification of Pf14-3-3 protein as a histone H3 phosphorylation reader in malaria parasites[J]. PLoS One, 2013, 8(1): e53179. | [34] | Siles-Lucas MM, Gottstein B.The 14-3-3 protein: a key molecule in parasites as in other organisms[J]. Trends Parasitol, 2003, 19(12): 575-581. | [35] | Jeanclos EM, Lin L, Treuil MW, et al. The chaperone protein 14-3-3eta interacts with the nicotinic acetylcholine receptor alpha 4 subunit. Evidence for a dynamic role in subunit stabilization[J]. J Biol Chem, 2001, 276(30): 28281-28290. | [36] | 都建, 沈继龙, 汪学龙, 等. 弓形虫信号转导蛋白14-3-3基因的克隆与表达[J]. 中国寄生虫学与寄生虫病杂志, 2003, 21(5): 279-281. | [37] | 孙敏, 何深一, 赵广会, 等. 刚地弓形虫14-3-3蛋白真核表达载体的构建与表达[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(6): 438-441. | [38] | 李锋, 胡敏, 沈继龙. 日本血吸虫重组信号蛋白14-3-3的纯化及抗体制备[J]. 中国寄生虫学与寄生虫病杂志, 2003, 21(4): 221-223. | [39] | 刘庆中, 沈继龙. 日本血吸虫重组信号蛋白14-3-3疫苗免疫保护性的观察[J]. 中国寄生虫学与寄生虫病杂志, 2003, 21(5): 257-260. | [40] | Liberator P, Anderson J, Feiglin M, et al. Molecular cloning and functional expression of mannitol-1-phosphatase from the apicomplexan parasite Eimeria tenella[J]. J Biol Chem, 1998, 273(7): 4237-4244. | [41] | Schechtman D, Ram D, Tarrab-Hazdai R, et al. Stage-specific expression of the mRNA encoding a 14-3-3 protein during the life cycle of Schistosoma mansoni[J]. Mol Biochem Parasit, 1995, 73(1/2): 275-278. | [42] | Dai WJ, Waldvogel A, Siles-Lucas M, et al. Echinococcus multilocularis proliferation in mice and respective parasite 14-3-3 gene expression is mainly controlled by an αβ+CD4+ T-cell-mediated immune response[J]. Immunology, 2004, 112(3): 481. | [43] | Weidner JM, Kanatani S, Uchtenhagen H, et al. Migratory activation of parasitized dendritic cells by the protozoan Toxoplasma gondii 14-3-3 protein[J]. Cell Microbiol, 2016, 18(11): 1537-1550. | [44] | 王志成, 徐元宏, 罗飞, 等. 日本血吸虫信号蛋白14-3-3在虫卵的定位及其免疫诊断价值初探[J]. 检验医学, 2007, 22(2): 128-131. | [45] | Gerschenson LE, Rotello RJ.Apoptosis: a different type of cell death[J]. FASEB J, 1992, 6(7): 2450-2455. | [46] | Schattenberg JM, Schuchmann M, Galle PR.Cell death and hepatocarcinogenesis: dysregulation of apoptosis signaling pathways[J]. J Gastroen Hepato, 2011, 26(s1): 213-219. | [47] | Rosenquist M.14-3-3 proteins in apoptosis[J]. Braz J Med Biol Res, 2003, 36(4): 403-408. | [48] | Danes CG, Wyszomierski SL, Lu J, et al.14-3-3 zeta down regulates p53 in mammary epithelial cells and confers luminal filling[J]. Canceer Res, 2008, 68(6): 1760-1767. | [49] | 曹磊, 安凤莲, 曹卫东, 等. 人脑胶质细胞瘤中凋亡分子14-3-3蛋白亚型的表达[J]. 临床与实验病理学杂志,2013,29(10): 1089-1091. | [50] | 刘永杰, 李庆章, 郝艳红. 猪囊尾蚴发育过程中的细胞凋亡[J]. 中国人兽共患病杂志, 2003, 19(1): 84-85. | [51] | 李文桂, 王鸿, 朱佑明. 多房棘球绦虫混合重组BCG-EmⅡ/3和BCG-Em14-3-3疫苗抑制小鼠脾细胞的凋亡[J]. 医学争鸣, 2007, 28(4): 292-294. | [52] | Sileslucas M, Merli M, Mackenstedt U, et al. The Echinococcus multilocularis 14-3-3 protein protects mice against primary but not secondary alveolar echinococcosis[J]. Vaccine, 2003, 21(5-6): 431-439. | [53] | 钱春燕, 宋丽君 余传信, 等. 抗日本血吸虫14-3-3蛋白单克隆抗体5C6抗原识别表位的鉴定[J]. 中国血吸虫病防治杂志, 2012, 24(1): 45-49. | [54] | 李宗吉, 赵巍. 细粒棘球蚴14-3-3蛋白序列、结构及抗原表位的分析[J]. 国际医学寄生虫病杂志, 2015, 42(4): 221-226. | [55] | Santivañez S, Hernández-González A, Chile N, et al. Proteomic study of activated Taenia solium oncospheres[J]. Mol Biochem Parasit, 2010, 171(1): 32-39. | [56] | Diazmasmela Y, Fragoso G, Ambrosio JR, et al. Immunodiagnosis of porcine cysticercosis: identification of candidate antigens through immunoproteomics[J]. Vet J, 2013, 198(3): 656-660. |
|