中国寄生虫学与寄生虫病杂志 ›› 2017, Vol. 35 ›› Issue (3): 299-304.
收稿日期:
2016-09-29
出版日期:
2017-06-30
发布日期:
2017-09-07
通讯作者:
陆绍红
基金资助:
Yi-xiu FU, Qing-ming KONG, Shao-hong LU*()
Received:
2016-09-29
Online:
2017-06-30
Published:
2017-09-07
Contact:
Shao-hong LU
Supported by:
摘要:
【提要】 CRISPR/Cas9是一种有效的基因组靶向修饰系统,能够实现对基因组特定位点的基因敲除、定点插入和基因修复等遗传操作,为寄生虫的基因功能分析、药物靶点和疫苗分子筛选等研究提供了技术创新平台。本文对CRISPR/Cas9系统的原理及其在刚地弓形虫(Toxoplasma gondii)、疟原虫(Plasmodium)、锥虫(Trypanosoma)和利什曼原虫(Leishmania)等重要寄生虫研究中的新进展进行综述,分析讨论现阶段该系统在寄生虫研究应用方面存在的问题和优化策略。
中图分类号:
付益修, 孔庆明, 陆绍红. CRISPR/Cas9系统在寄生虫领域的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(3): 299-304.
Yi-xiu FU, Qing-ming KONG, Shao-hong LU. Research development of CRISPR/Cas9 system on parasitic studies[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2017, 35(3): 299-304.
[1] | Doudna JA, Charpentier E.Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096. |
[2] | Sternberg SH, Doudna JA.Expanding the Biologist’s Toolkit with CRISPR-Cas9[J]. Mol Cell, 2015, 58(4): 568-574. |
[3] | Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12): 5429-5433. |
[4] | Mojica FJ, Díez-Villaseñor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, bacteria and mitochondria[J]. Mol Microbiol, 2000, 36(1): 244-246. |
[5] | Makarova KS, Aravind L, Grishin NV, et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis[J]. Nucleic Acids Res, 2002, 30(2): 482-496. |
[6] | Guy CP, Majerník AI, Chong JP, et al. A novel nuclease-ATPase(Nar71) from archaea is part of a proposed thermophilic DNA repair system[J]. Nucleic Acids Res, 2004, 32(21): 6176-6186. |
[7] | Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology, 2005, 151(Pt 8): 2551-2561. |
[8] | Mojica FJ, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. J Mol Evol, 2005, 60(2): 174-182. |
[9] | Pourcel C, Salvignol G, Vergnaud G.CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151(Pt 3): 653-663. |
[10] | Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. |
[11] | Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. |
[12] | Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109(39): E2579-E2586. |
[13] | Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
[14] | Garneau JE, Dupuis MÈ, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320): 67-71. |
[15] | Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNaseIII[J]. Nature, 2011, 471(7340): 602-607. |
[16] | Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. |
[17] | Kennedy EM, Cullen BR. Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment[J]. Virology, 2015, 479-480: 213-220. |
[18] | Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 2014, 343(6166): 84-87. |
[19] | Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451. |
[20] | Konermann S, Brigham MD, Trevino AE, et al. Optical control of mammalian endogenous transcription and epigenetic states[J]. Nature, 2013, 500(7463): 472-476. |
[21] | Chen B, Gilbert LA, Cimini BA, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system[J]. Cell, 2013, 155(7): 1479-1491. |
[22] | Ren X, Sun J, Housden BE, et al. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9[J]. Proc Natl Acad Sci USA, 2013, 110(47): 19012-19017. |
[23] | 蒲元华, 张德林. 弓形虫入侵宿主机制及免疫学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(6): 480-485, 490. |
[24] | Shen B, Brown KM, Lee TD, et al. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9[J]. MBio, 2014, 5(3): e01114-e01114. |
[25] | Sidik SM, Hackett CG, Tran F, et al. Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9[J]. PLoS One, 2014, 9(6): e100450. |
[26] | Sugi T, Kato K, Weiss LM.An improved method for introducing site-directed point mutation into the Toxoplasma gondii genome using CRISPR/Cas9[J]. Parasitol Int, 2016, 65(5 Pt B): 558-562. |
[27] | Peng D, Kurup SP, Yao PY, et al. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi[J]. MBio, 2014, 6(1): e02097-e02014. |
[28] | Straimer J, Lee MC, Lee AH, et al. Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases[J]. Nat Methods, 2012, 9(10): 993-998. |
[29] | McNamara CW, Lee MC, Lim CS, et al. Targeting Plasmodium PI(4)K to eliminate malaria[J]. Nature, 2013, 504(7479): 248-253. |
[30] | Sollelis L, Ghorbal M, MacPherson CR, et al. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites[J]. Cell Microbiol, 2015, 17(10): 1405-1412. |
[31] | Zhang WW, Matlashewski G.CRISPR-Cas9-mediated genome editing in Leishmania donovani[J]. MBio, 2015, 6(4): e00861. |
[32] | Zhang C, Xiao B, Jiang Y, et al. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system[J]. MBio, 2014, 5(4): e01414-e01414. |
[33] | 郑斌, 陆绍红. 刚地弓形虫免疫逃避相关分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(5): 396-400. |
[34] | Jones NG, Wang Q, Sibley LD.Secreted protein kinases regulate cyst burden during chronic toxoplasmosis[J]. Cell Microbiol, 2016, 19(2): e12651. |
[35] | Yang M, Zheng J, Jia H, et al. Functional characterization of X-prolyl aminopeptidase from Toxoplasma gondii[J]. Parasitology, 2016, 143(11): 1443-1449. |
[36] | Zheng J, Jia H, Zheng Y.Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9[J]. Int J Parasitol, 2015, 45(2-3): 141-148. |
[37] | Wang JL, Huang SY, Li TT, et al. Evaluation of the basic functions of six calcium-dependent protein kinases in Toxoplasma gondii using CRISPR-Cas9 system[J]. Parasitol Res, 2016, 115(2): 697-702. |
[38] | Long S, Wang Q, Sibley LD.Analysis of noncanonical calcium-dependent protein kinases in Toxoplasma gondii by targeted gene deletion using CRISPR/Cas9[J]. Infect Immun, 2016, 84(5): 1262-1273. |
[39] | Shen B, Buguliskis JS, Lee TD, et al. Functional analysis of rhomboid proteases during Toxoplasma invasion[J]. MBio, 2014, 5(5): e01795-e01714. |
[40] | Stewart RJ, Tonkin CJ.Rhomboid proteases in invasion and replication of Apicomplexa[J]. Mol Microbiol, 2015, 97(2): 185-188. |
[41] | Olias P, Sibley LD.Functional analysis of the role of Toxoplasma gondii nucleoside triphosphate hydrolases Ⅰ and Ⅱ in acute mouse virulence and immune suppression[J]. Infect Immun, 2016, 84(7): 1994-2001. |
[42] | Behnke MS, Khan A, Sibley LD.Genetic mapping reveals that sinefungin resistance in Toxoplasma gondii is controlled by a putative amino acid transporter locus that can be used as a negative selectable marker[J]. Eukaryotic Cell, 2015, 14(2): 140-148. |
[43] | 张逸龙, 潘卫庆. 恶性疟原虫对青蒿素产生抗性的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(6): 418-424. |
[44] | Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014, 505(7481): 50-55. |
[45] | Ghorbal M, Gorman M, Macpherson CR, et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system[J]. Nat Biotechnol, 2014, 32(8): 819-821. |
[46] | Ng CL, Siciliano G, Lee MC, et al. CRISPR-Cas9-modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs[J]. Mol Microbiol, 2016, 101(3): 381-393. |
[47] | Lander N, Li ZH, Niyogi S, et al. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment[J]. MBio, 2015, 6(4): e01012-e01015. |
[48] | Vinayak S, Pawlowic MC, Sateriale A, et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum[J]. Nature, 2015, 523(7561): 477-480. |
[49] | Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9): 822-826. |
[50] | Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9): 827-832. |
[51] | Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9): 839-843. |
[52] | Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6): 1380-1389. |
[53] | Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing[J]. Nat Biotechnol, 2014, 32(6): 569-576. |
[54] | Sidik SM, Huet D, Ganesan SM,et al. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes[J]. Cell, 2016, 166(6): 1423-1435.e12. |
[1] | 徐凯, 陈力, 林登峰. 寄生虫及其相关物治疗炎症性肠病转归进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(3): 407-412. |
[2] | 李昆雷, 夏俊, 邱美龄, 胡美荷, 吉古孝安, 候梦丹, 翟少华. 抗寄生虫中药活性成分体外抗细粒棘球蚴作用[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 191-198. |
[3] | 王强, 许静, 夏志贵, 韩帅, 张仪, 钱门宝, 李石柱, 周晓农. 我国重点寄生虫病疫情形势及防控工作重点[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 1-7. |
[4] | 郝瑜婉, 田添, 朱泽林, 陈怡君, 朱慧慧, 王强, 李石柱, 周晓农. 全国疾控机构重点寄生虫病防治能力建设现状分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 83-90. |
[5] | 国家感染性疾病临床医学研究中心, 国家传染病医学中心撰写组. 食源性寄生虫病诊治专家共识(2023)[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 653-668. |
[6] | 马悦, 赵保才, 周佳丽, 胡峻豪, 赵洪喜. miRNA在顶复门寄生虫感染中调控作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 749-755. |
[7] | 杨金颋, 黄晓宾, 王玉娟, 郭宪国, 张现政, 杨慧娟, 郑小燕. 云南大理毛腿鼠耳蝠体表寄生虫感染情况及其体表寄生蛛蝇的形态特征和系统进化分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 452-458. |
[8] | 李小丽, 栗绍刚, 吴赵永. 双叶槽绦虫肠道感染患者的临床表现特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 459-463. |
[9] | 王峰, 吴凡, 李琳琳, 黄青青. 安徽省芜湖市野鼠寄生虫感染情况分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 516-519. |
[10] | 谢宜, 王莹, 王旭, 施丹丹, 付梅花, 李春阳, 伍卫平, 丹巴泽里, 廖沙, 张凯歌, 邓雪莹, 官亚宜. 基于高通量测序的家犬粪便寄生虫病原调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 325-330. |
[11] | 盛慧锋, 周晓农, 余森海, 汤林华, 冯正, 李石柱, 薛纯良, 吴观陵, 余新炳, 温廷桓, 程训佳, 潘卫庆, 胡薇, 苏川, 汪天平, 吴忠道, 陈勤, 张争艳, 戴菁, 李菂, 刘雨舟, 曹建平. 《中国寄生虫学与寄生虫病杂志》创刊40年发展历程[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 1-9. |
[12] | 陈琳, 朱继峰, 邱竞帆, 徐志鹏, 张东辉, 陈璐, 何健, 李伟, 杨坤, 季旻珺. 寓全健康理念于血吸虫病防控虚拟仿真项目建设[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 81-84. |
[13] | 吴晓莹, 胡媛, 曹建平. 寄生虫病表位疫苗研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 98-102. |
[14] | 乜茹, 李文登, 冶赓博, 尹凤娇, 庞明泉, 王志鑫, 樊海宁. 细胞焦亡在人体寄生虫病中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 780-785. |
[15] | 荣智利, 石婷婷. 脑曼氏裂头蚴病误诊1例[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 817-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||