中国寄生虫学与寄生虫病杂志 ›› 2025, Vol. 43 ›› Issue (1): 129-134.doi: 10.12140/j.issn.1000-7423.2025.01.020
崔蕾1(), 方圆1,2, 周正斌1, 何雅琦1, 张仪1,2,*(
)(
)
收稿日期:
2024-09-18
修回日期:
2024-12-06
出版日期:
2025-02-28
发布日期:
2025-03-26
通讯作者:
张仪(ORCID:0000-0002-3169-1823),女,硕士,研究员,从事寄生虫与媒介的研究。E-mail:作者简介:
崔蕾,女,硕士研究生,从事医学媒介生物防制的研究。E-mail:2264677077@qq.com
基金资助:
CUI Lei1(), FANG Yuan1,2, ZHOU Zhengbin1, HE Yaqi1, ZHANG Yi1,2,*(
)(
)
Received:
2024-09-18
Revised:
2024-12-06
Online:
2025-02-28
Published:
2025-03-26
Contact:
E-mail: Supported by:
摘要:
白蛉作为多种病原体的传播媒介具有重要的流行病学意义。白蛉肠道内定植着大量的微生物群落,对白蛉及其携带病原体的繁殖和生长发育有着重要影响。本文综述了白蛉携带病原体的种类和肠道微生物的组成,并揭示了白蛉-病原体-肠道微生物之间的相互关系。肠道微生物不仅能直接抑制病原体的感染和传播,也可通过参与白蛉的免疫应答和防御机制,间接改变其感染和传播病原体的能力。
中图分类号:
崔蕾, 方圆, 周正斌, 何雅琦, 张仪. 白蛉携带病原体及其肠道微生物的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2025, 43(1): 129-134.
CUI Lei, FANG Yuan, ZHOU Zhengbin, HE Yaqi, ZHANG Yi. Research progress on pathogens carried by sand flies and their gut microbiota[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2025, 43(1): 129-134.
[1] | 熊光华. 中国白蛉科白蛉种类[J]. 国际医学寄生虫病杂志, 2008, 35(6): 283-286. |
Xiong GH. Sandfly species of Phlebotomidiae in China[J]. Int J Med Parasit Dis, 2008, 35(6): 283-286. (in Chinese) | |
[2] | 管立人, 顾灯安, 王捷. 白蛉的生物学和防制对策[J]. 国际医学寄生虫病杂志, 2007, 34(6): 283-290. |
Guan LR, Gu DA, Wang J. Biology and control strategy of Phlebotomine sandfly[J]. Int J Med Parasit Dis, 2007, 34(6): 283-290. (in Chinese) | |
[3] | Galati EAB, Rodrigues BL. A review of historical Phlebotominae taxonomy (Diptera ∶ Psychodidae)[J]. Neotrop Entomol, 2023, 52(4): 539-559. |
[4] | Lozano-Sardaneta YN, Díaz-Cruz JA, Viveros-Santos V, et al. Phylogenetic relations among Mexican phlebotomine sand flies (Diptera ∶ Psychodidae) and their divergence time estimation[J]. PLoS One, 2023, 18(6): e0287853. |
[5] | Lozano-Sardaneta YN, Viveros-Santos V, Colunga-Salas P, et al. Is Psathyromyia shannoni (Diptera ∶ Psychodidae ∶ Phlebotominae) a species complex? Retrospective study of genetic diversity of COI gene, pathogens and geographic distribution[J]. Acta Trop, 2023, 238: 106807. |
[6] | Karimian F, Koosha M, Choubdar N, et al. Comparative analysis of the gut microbiota of sand fly vectors of zoonotic visceral leishmaniasis (ZVL) in Iran; host-environment interplay shapes diversity[J]. PLoS Negl Trop Dis, 2022, 16(7): e0010609. |
[7] | Omondi ZN, Arserim SK, Töz S, et al. Host-parasite interactions: Regulation of Leishmania infection in sand fly[J]. Acta Parasitol, 2022, 67(2): 606-618. |
[8] | Labbé F, Abdeladhim M, Abrudan J, et al. Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World[J]. PLoS Negl Trop Dis, 2023, 17(4): e0010862. |
[9] | Lopez Y, Arana B, Rizzo N, et al. A neglected among the neglected: A review of cutaneous leishmaniasis in Guatemala[J]. Trans R Soc Trop Med Hyg, 2023, 117(9): 609-616. |
[10] |
Shita EY, Nibret E, Munshea A, et al. Burden and risk factors of cutaneous leishmaniasis in Ethiopia: A systematic review and meta-analysis[J]. Int J Dermatol, 2022, 61(11): 1336-1345.
doi: 10.1111/ijd.16265 pmid: 35569096 |
[11] | 管立人. 中国白蛉(双翅目∶毛蛉科)调查研究工作的展望[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(4): 310-314. |
Guan LR. Prospect on the investigation of sandflies (Diptera ∶ Psychodidae) in China[J]. Chin J Parasitol Parasit Dis, 2013, 31(4): 310-314. (in Chinese) | |
[12] |
张丽, 马雅军. 基于线粒体DNA的我国中华白蛉群体遗传分化研究[J]. 中国热带医学, 2016, 16(10): 947-952.
doi: 10.13604/j.cnki.46-1064/r.2016.10.01 |
Zhang L, Ma YJ. Molecular population genetic structure of Phlebotomus chinensis (Diptera ∶ Psychodidae) in China inferred by mitochondrial DNA[J]. China Trop Med, 2016, 16(10): 947-952. (in Chinese) | |
[13] | 张红卫, 刘颖, 杨成运, 等. 以全健康理念推进我国内脏利什曼病从控制走向消除[J]. 热带病与寄生虫学, 2022, 20(4): 181-184. |
Zhang HW, Liu Y, Yang CY, et al. Promoting visceral leishmaniasis from control to elimination in China based on One Health approach[J]. J Trop Dis Parasitol, 2022, 20(4): 181-184. (in Chinese) | |
[14] |
罗卓韦, 周正斌, 公衍峰, 等. 我国内脏利什曼病的流行现状和防控挑战[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 146-152.
doi: 10.12140/j.issn.1000-7423.2022.02.003 |
Luo ZW, Zhou ZB, Gong YF, et al. Current status and challenges of visceral leishmaniasis in China[J]. Chin J ParasitolParasit Dis, 2022, 40(2): 146-152. (in Chinese) | |
[15] | Chen HM, Chen HY, Tao F, et al. Leishmania infection and blood sources analysis in Phlebotomus chinensis (Diptera ∶ Psychodidae) along extension region of the Loess Plateau, China[J]. Infect Dis Poverty, 2020, 9: 125. |
[16] | Jancarova M, Polanska N, Volf P, et al. The role of sand flies as vectors of viruses other than phleboviruses[J]. J Gen Virol, 2023, 104(4). |
[17] | Ferreira FV, Aguiar ERGR, Olmo RP, et al. The small non-coding RNA response to virus infection in the Leishmania vector Lutzomyia longipalpis[J]. PLoS Negl Trop Dis, 2018, 12(6): e0006569. |
[18] | Wang QY, Yin QK, Fu SH, et al. Isolation and identification of sandfly-borne viruses from sandflies collected from June to August, 2019, in Yangquan County, China[J]. Viruses, 2022, 14(12): 2692. |
[19] | Paquette SJ, Simon AY, Xiii A, et al. Medically significant vector-borne viral diseases in Iran[J]. Microorganisms, 2023, 11(12): 3006. |
[20] | Sellali S, Lafri I, Ayhan N, et al. Neutralizing based sero-prevalence study of Toscana virus in livestock from Algeria[J]. Comp Immunol Microbiol Infect Dis, 2023, 103: 102075. |
[21] | Amaro F, Zé-Zé L, Alves MJ. Sandfly-borne phleboviruses in Portugal: Four and still counting[J]. Viruses, 2022, 14(8): 1768. |
[22] | 程睿, 范娜, 鲁晓睛, 等. 白蛉传播的病毒及其与疾病关系的研究进展[J]. 中国热带医学, 2018, 18(10): 1070-1075. |
Cheng R, Fan N, Lu XJ, et al. Sandflies transmitted virus and its associated infection[J]. China Trop Med, 2018, 18(10): 1070-1075. (in Chinese) | |
[23] | Li Y, Wang YN, Tian F, et al. First report of Karimabad virus in Rhombomys opimus in China[J]. One Health, 2022,15:100437. |
[24] | 梁国栋. 我国自然界白蛉携带病毒的研究进展[J]. 中华实验和临床病毒学杂志, 2022, 36(4): 469-474. |
Liang GD. Research progress of natural sandfly-borne viruses in China[J]. Chin J Exp Clin Virol, 2022, 36(4): 469-474. (in Chinese) | |
[25] | 王晶. 山西省虫媒病毒的分离与鉴定: 中国首次从白蛉中分离到白蛉病毒属病毒[D]. 青岛: 青岛大学, 2020: 2-4. |
Wang J. Isolation and identification of insect-borne viruses in Shanxi Province: Sandfly virus was isolated from China for the first time[D]. Qingdao: Qingdao University, 2020: 2-4. (in Chinese) | |
[26] | Lafri I, Bitam I. Phlebotomine sandflies and associated pathogens in Algeria: Update and comprehensive overview[J]. Vet Ital, 2021, 57(3) |
[27] |
Maroli M, Feliciangeli MD, Bichaud L, et al. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern[J]. Med Vet Entomol, 2013, 27(2): 123-147.
doi: 10.1111/j.1365-2915.2012.01034.x pmid: 22924419 |
[28] |
Hustedt J, Prasetyo DB, Fiorenzano JM, et al. Correction: Phlebotomine sand flies (Diptera ∶ Psychodidae) and sand fly-borne pathogens in the greater Mekong subregion: A systematic review[J]. Parasit Vectors, 2022, 15(1): 432.
doi: 10.1186/s13071-022-05550-x pmid: 36397153 |
[29] | Mohd Jaafar F, Belhouchet M, Belaganahalli M, et al. Full-genome characterisation of Orungo, Lebombo and Changuinola viruses provides evidence for co-evolution of orbiviruses with their arthropod vectors[J]. PLoS One, 2014, 9(1): e86392. |
[30] | Silva SP, Dilcher M, Weber F, et al. Genetic and biological characterization of selected Changuinola viruses (Reoviridae ∶ Orbivirus) from Brazil[J]. J Gen Virol, 2014, 95(Pt 10): 2251-2259. |
[31] |
Marklewitz M, Handrick S, Grasse W, et al. Gouleako virus isolated from West African mosquitoes constitutes a proposed novel genus in the family Bunyaviridae[J]. J Virol, 2011, 85(17): 9227-9234.
doi: 10.1128/JVI.00230-11 pmid: 21715500 |
[32] | Zorrilla VO, Lozano ME, Espada LJ, et al. Comparison of sand fly trapping approaches for vector surveillance of Leishmania and Bartonella species in ecologically distinct, endemic regions of Peru[J]. PLoS Negl Trop Dis, 2021, 15(7): e0009517. |
[33] | 栗冬梅, 张建中, 刘起勇. 中国巴尔通体与相关疾病的研究进展[J]. 中国人兽共患病学报, 2008, 24(8): 762-765, 770. |
Li DM, Zhang JZ, Liu QY. Research progress of Bartonella and related diseases in China[J]. Chin J Zoonoses, 2008, 24(8): 762-765, 770. (in Chinese) | |
[34] | Wang J, Gou QY, Luo GY, et al. Total RNA sequencing of Phlebotomus chinensis sandflies in China revealed viral, bacterial, and eukaryotic microbes potentially pathogenic to humans[J]. Emerg Microbes Infect, 2022, 11(1): 2080-2092. |
[35] |
España PP, Uranga A, Cillóniz C, et al. Q fever (Coxiella burnetii)[J]. Semin Respir Crit Care Med, 2020, 41(4): 509-521.
doi: 10.1055/s-0040-1710594 pmid: 32629489 |
[36] | 陆秋成, 何恒果, 蒲德强. 昆虫肠道微生物种类及其功能研究进展[J]. 四川农业科技, 2023(2): 48-52. |
Lu QC, He HG, Pu DQ. Research progress on species and functions of intestinal microorganisms in insects[J]. Sichuan Agric Sci Technol, 2023(2): 48-52. (in Chinese) | |
[37] | Monteiro CC, Villegas LEM, Campolina TB, et al. Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing[J]. Parasit Vectors, 2016, 9(1): 480. |
[38] | Akhoundi M, Bakhtiari R, Guillard T, et al. Diversity of the bacterial and fungal microflora from the midgut and cuticle of phlebotomine sand flies collected in North-Western Iran[J]. PLoS One, 2012, 7(11): e50259. |
[39] | Abbasi I, Nasereddin A, Warburg A. Development of a next generation DNA sequencing-based multi detection assay for detecting and identifying Leishmania parasites, blood sources, plant meals and intestinal microbiome in phlebotomine sand flies[J]. Acta Trop, 2019, 199: 105101. |
[40] |
Karimian F, Vatandoost H, Rassi Y, et al. Aerobic midgut microbiota of sand fly vectors of zoonotic visceral leishmaniasis from northern Iran, a step toward finding potential paratransgenic candidates[J]. Parasit Vectors, 2019, 12(1): 10.
doi: 10.1186/s13071-018-3273-y pmid: 30616668 |
[41] | Vivero RJ, Villegas-Plazas M, Cadavid-Restrepo GE, et al. Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome[J]. Sci Rep, 2019, 9(1): 17746. |
[42] | Pires ACAM, Villegas LEM, Campolina TB, et al. Bacterial diversity of wild-caught Lutzomyia longipalpis (a vector of zoonotic visceral leishmaniasis in Brazil) under distinct physiological conditions by metagenomics analysis[J]. Parasit Vectors, 2017, 10(1): 627. |
[43] | Fraihi W, Fares W, Perrin P, et al. An integrated overview of the midgut bacterial flora composition of Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western Mediterranean Basin[J]. PLoS Negl Trop Dis, 2017, 11(3): e0005484. |
[44] | Papadopoulos C, Karas PA, Vasileiadis S, et al. Host species determines the composition of the prokaryotic microbiota in Phlebotomus sandflies[J]. Pathogens, 2020, 9(6): 428. |
[45] | Parvizi P, Bordbar A, Najafzadeh N. Detection of Wolbachia pipientis, including a new strain containing the wsp gene, in two sister species of Paraphlebotomus sandflies, potential vectors of zoonotic cutaneous leishmaniasis[J]. Mem Inst Oswaldo Cruz, 2013, 108(4): 414-420. |
[46] |
Karatepe B, Aksoy S, Karatepe M. Investigation of Wolbachia spp. and Spiroplasma spp. in Phlebotomus species by molecular methods[J]. Sci Rep, 2018, 8(1): 10616.
doi: 10.1038/s41598-018-29031-3 pmid: 30006543 |
[47] | Lozano-Sardaneta YN, Marina CF, Torres-Monzón JA, et al. Molecular detection of Wolbachia and Bartonella as part of the microbiome of phlebotomine sand flies from Chiapas, Mexico[J]. Parasitol Res, 2023, 122(6): 1293-1301. |
[48] | Pimentel AC, Cesar CS, Martins M, et al. The antiviral effects of the symbiont bacteria Wolbachia in insects[J]. Front Immunol, 2021, 11: 626329. |
[49] | McCarthy CB, Diambra LA, Rivera Pomar RV. Metagenomic analysis of taxa associated with Lutzomyia longipalpis, vector of visceral leishmaniasis, using an unbiased high-throughput approach[J]. PLoS Negl Trop Dis, 2011, 5(9): e1304. |
[50] | Campolina TB, Villegas LEM, Monteiro CC, et al. Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis[J]. PLoS Negl Trop Dis, 2020, 14(10): e0008666. |
[51] | Amni F, Maleki-Ravasan N, Nateghi-Rostami M, et al. Co-infection of Phlebotomus papatasi (Diptera ∶ Psychodidae) gut bacteria with Leishmania major exacerbates the pathological responses of BALB/c mice[J]. Front Cell Infect Microbiol, 2023, 13: 1115542. |
[52] | Sant’Anna MRV, Diaz-Albiter H, Aguiar-Martins K, et al. Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection[J]. Parasit Vectors, 2014, 7: 329. |
[53] | Moraes CS, Seabra SH, Castro DP, et al. Leishmania (Leishmania) chagasi interactions with Serratia marcescens: Ultrastructural studies, lysis and carbohydrate effects[J]. Exp Parasitol, 2008, 118(4): 561-568. |
[54] | Tom A, Pradeep Kumar N, Kumar A, et al. Interactions between Leishmania parasite and sandfly: A review[J]. Parasitol Res, 2023, 123(1): 6. |
[55] |
Serafim TD, Coutinho-Abreu IV, Dey R, et al. Leishmaniasis: The act of transmission[J]. Trends Parasitol, 2021, 37(11): 976-987.
doi: 10.1016/j.pt.2021.07.003 pmid: 34389215 |
[56] |
Telleria EL, Martins-da-Silva A, Tempone AJ, et al. Leishmania, microbiota and sand fly immunity[J]. Parasitology, 2018, 145(10): 1336-1353.
doi: 10.1017/S0031182018001014 pmid: 29921334 |
[57] | 刘彪, 康迅, 王悦鑫, 等. 蚊虫肠道菌群的多样性与应用研究进展[J]. 海南医学院学报, 2022, 28(7): 550-554, 560. |
Liu B, Kang X, Wang YX, et al. Research progress on the diversity and application of mosquito intestinal flora[J]. J Hainan Med Univ, 2022, 28(7): 550-554, 560. (in Chinese) | |
[58] | Blackwell M. Made for each other: Ascomycete yeasts and insects[J]. Microbiol Spectr, 2017, 5(3): 5.3.13. |
[59] | Gatesoupe FJ. Live yeasts in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development[J]. Aquaculture, 2007, 267(1/2/3/4): 20-30. |
[60] |
Martin E, VarottoBoccazzi I, De Marco L, et al. The mycobiota of the sand fly Phlebotomus perniciosus: Involvement of yeast symbionts in uric acid metabolism[J]. Environ Microbiol, 2018, 20(3): 1064-1077.
doi: 10.1111/1462-2920.14044 pmid: 29345102 |
[61] |
Tabbabi A, Mizushima D, Yamamoto DS, et al. Effects of host species on microbiota composition in Phlebotomus and Lutzomyia sand flies[J]. Parasit Vectors, 2023, 16(1): 310.
doi: 10.1186/s13071-023-05939-2 pmid: 37653518 |
[62] |
Karakuş M, Karabey B, Orçun Kalkan Ş, et al. Midgut bacterial diversity of wild populations of Phlebotomus (P.) papatasi, the vector of zoonotic cutaneous leishmaniasis (ZCL) in Turkey[J]. Sci Rep, 2017, 7(1): 14812.
doi: 10.1038/s41598-017-13948-2 pmid: 29093481 |
[1] | 王陆儿, 郑玉华, 姬春花, 薛淑琴. 2022—2023年山西省高平市5例内脏利什曼病病例流行病学调查与处置[J]. 中国寄生虫学与寄生虫病杂志, 2025, 43(1): 143-146. |
[2] | 邵宏莉, 冯美娟, 黄丽, 史临爱, 梁红云, 张建, 张重辉. 2013—2022年临汾市内脏利什曼病流行特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(6): 721-725. |
[3] | 费思伟, 赵翰卿, 尹静娴, 孙芷珊, 郭晓奎, KASSEGNE Kokouvi, 周晓农. 基于文献计量分析的蜱及蜱传疾病研究领域发展趋势[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 609-618. |
[4] | 郑玉华, 帖萍, 白永飞, 闫昌福, 王婷, 王晶莹, 田晓东, 代培芳. 2021—2022年山西省内脏利什曼病流行区家犬感染情况及白蛉密度调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 470-475. |
[5] | 杨成运, 贺志权, 鲁德领, 钱丹, 刘颖, 李素华, 周瑞敏, 邓艳, 张红卫, 王昊, 赵东阳, 郭万申. 2020年河南省内脏利什曼病病例的流行病学调查[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 481-486. |
[6] | 李云霞, 程睿, 周瑞敏, 杨成运, 张红卫, 田利光, 艾琳. 河南省洛阳市1例新发本地内脏利什曼病病例的流行病学调查[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 410-413. |
[7] | 裴庭苇, 于志军, 刘敬泽. 蜱类miRNA研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 771-776. |
[8] | 蔡珍, 余茜, 程功. 蚊肠道微生物调节蚊媒传染病传播的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(5): 603-608. |
[9] | 伊斯拉音·乌斯曼, 王多忠, 侯岩岩, 凯赛尔·克尤木, 左新平, 马子超, 王端明, 麦麦提艾力·阿卜力米提, 艾比不拉·吾浦尔. 新疆伽师县荒漠型内脏利什曼病流行区媒介白蛉监测[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(2): 194-196. |
[10] | 周正斌, 张仪, 朱淮民, 施文琦, 金长发. 多重PCR鉴别我国南疆3种常见蛉种[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(3): 15-185-187. |
[11] | 管立人. 中国白蛉(双翅目∶毛蛉科)调查研究工作的展望[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(4): 14-310-314. |
[12] | 顾灯安;左新平;伊斯拉音·乌斯曼;兰勤娴;金长发;周晓俊;危芙蓉;张仪. 新疆伽师县内脏利什曼病媒介白蛉调查[J]. 中国寄生虫学与寄生虫病杂志, 2010, 28(4): 9-283. |
[13] | 张丽;樊勇;马雅军. 中华白蛉微卫星DNA序列的分离和多态位点筛选的初步研究[J]. 中国寄生虫学与寄生虫病杂志, 2009, 27(6): 11-507. |
[14] | 顾灯安;金长发;兰勤娴;左新平;伊斯拉音·乌斯曼;张仪. 不同诱虫灯和引诱剂诱捕白蛉的现场试验[J]. 中国寄生虫学与寄生虫病杂志, 2009, 27(1): 18-61. |
[15] | 金长发;左新平;顾灯安;伊斯拉音·乌斯曼;兰勤娴;张仪;童苏祥;李雄;茹孜古丽·朱马洪;阿不力米提;木合塔;阿不都外力;库尔班;牛新玲. 新发现的内脏利什曼病流行区新疆民丰县Ⅱ. 传播媒介的初步研究[J]. 中国寄生虫学与寄生虫病杂志, 2008, 26(2): 12-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||