[1] |
Zhang WJ, Fang ZM, Liu WQ. NLRP3 inflammasome activation from Kupffer cells is involved in liver fibrosis of Schistosoma japonicum-infected mice via NF-κB[J]. Parasit Vectors, 2019, 12(1):29.
doi: 10.1186/s13071-018-3223-8
|
[2] |
Anthony BJ, Ramm GA, McManus DP. Role of resident liver cells in the pathogenesis of schistosomiasis[J]. Trends Parasitol, 2012, 28(12):572-579.
doi: 10.1016/j.pt.2012.09.005
pmid: 23099112
|
[3] |
Ye Z, Huang S, Zhang Y, et al. Galectins, eosinophiles, and macrophages may contribute to Schistosoma japonicum egg-induced immunopathology in a mouse model[J]. Front Immunol, 2020, 11:146.
doi: 10.3389/fimmu.2020.00146
|
[4] |
Nguyen-Lefebvre AT, Ajith A, Portik-Dobos V, et al. The innate immune receptor TREM-1 promotes liver injury and fibrosis[J]. J Clin Investig, 2018, 128(11):4870-4883.
doi: 10.1172/JCI98156
|
[5] |
Zhang X, Yang Y, Zhao Y. Macrophage phenotype and its relationship with renal function in human diabetic nephropathy[J]. PLoS One, 2019, 14(9):e0221991.
doi: 10.1371/journal.pone.0221991
|
[6] |
Wu J, Li J, Salcedo R, et al. The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma[J]. Cancer Res, 2012, 72(16):3977-3986.
doi: 10.1158/0008-5472.CAN-12-0938
|
[7] |
Zhao CS, Qin M, Tan MJ, et al. Effect of praziquantel on impaired renal function in mice with acute infection of Schistosoma japonicum[J]. Chin J Parasitol Parasit Dis, 2021, 39(2):200-209. (in Chinese)
|
|
( 赵成思, 秦敏, 谭明娟, 等. 吡喹酮对日本血吸虫急性感染小鼠肾脏功能损伤的影响[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(2):200-209.)
|
[8] |
Bai X, Yu JL, Wang F, et al. Alternatively activated macrophages in helminth infections[J]. Chin J Parasitol Parasit Dis, 2011, 29(3):219-223. (in Chinese)
|
|
( 白雪, 于建立, 王峰, 等. 替代性活化的巨噬细胞在蠕虫感染中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2011, 29(3):219-223.)
|
[9] |
Chen C, Shen WT, Liu Y. Advances in research on the effect of the macrophage microenvironment on liver fibrosis due to schistosomiasis[J]. J Pathog Biol, 2020, 15(2):241-245. (in Chinese)
|
|
( 陈聪, 沈文涛, 刘彦. 微环境中巨噬细胞影响血吸虫肝纤维化的研究进展[J]. 中国病原生物学杂志, 2020, 15(2):241-245.)
|
[10] |
Zhou HH, Lyu NY, Tong SJ, et al. Resveratrol regulates M1/M2 polarization of mice infected with Schistosoma japonicum through mitochondria[J]. Chin Pharmacol Bull, 2021, 37(1):98-106. (in Chinese)
|
|
( 周慧慧, 吕年银, 佟书娟, 等. 白藜芦醇通过线粒体调控血吸虫感染小鼠M1/M2极化[J]. 中国药理学通报, 2021, 37(1):98-106.)
|
[11] |
Burke ML, Jones MK, Gobert GN, et al. Immunopathogenesis of human schistosomiasis[J]. Parasite Immunol, 2009, 31(4):163-176.
doi: 10.1111/j.1365-3024.2009.01098.x
pmid: 19292768
|
[12] |
Jenkins SJ, Ruckerl D, Cook PC, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation[J]. Science, 2011, 332(6035):1284-1288.
doi: 10.1126/science.1204351
|
[13] |
Asahi H, Stadecker MJ. Analysis of egg antigens inducing hepatic lesions in schistosome infection[J]. Parasitol Int, 2003, 52(4):361-367.
doi: 10.1016/S1383-5769(03)00052-7
|
[14] |
Zhu J, Xu Z, Chen X, et al. Parasitic antigens alter macrophage polarization during Schistosoma japonicum infection in mice[J]. Parasit Vectors, 2014, 7:122.
doi: 10.1186/1756-3305-7-122
|
[15] |
Ribeiro de Jesus A, Araújo I, Bacellar O, et al. Human immune responses to Schistosoma mansoni vaccine candidate antigens[J]. Infect Immun, 2000, 68(5):2797-2803.
doi: 10.1128/IAI.68.5.2797-2803.2000
pmid: 10768975
|
[16] |
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12):958-969.
doi: 10.1038/nri2448
pmid: 19029990
|
[17] |
Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci, 2008, 13:453-461.
doi: 10.2741/2692
|
[18] |
Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective[J]. Annu Rev Immunol, 2009, 27:451-483.
doi: 10.1146/immunol.2009.27.issue-1
|
[19] |
Yang FC, Chiu PY, Chen Y, et al. TREM-1-dependent M1 macrophage polarization restores intestinal epithelium damaged by DSS-induced colitis by activating IL-22-producing innate lymphoid cells[J]. J Biomed Sci, 2019, 26(1):46.
doi: 10.1186/s12929-019-0539-4
|
[20] |
Lao JF, Gong ST, Wu MH, et al. Role of TREM-1 on intestinal anti-tuberculosis immunity[J]. J Trop Med, 2021, 21(5): 566-570, 627, 673. (in Chinese)
|
|
( 劳娟凤, 龚四堂, 吴敏昊, 等. 髓系细胞触发受体1增强肠道抗结核感染免疫的机制研究[J]. 热带医学杂志, 2021, 21(5): 566-570, 627, 673.)
|
[21] |
Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration[J]. Nat Immunol, 2006, 7(12):1266-1273.
pmid: 17110943
|
[22] |
El Mezayen R, El Gazzar M, Seeds MC, et al. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin[J]. Immunol Lett, 2007, 111(1):36-44.
pmid: 17568691
|
[23] |
Cheng PC, Lin CN, Chen YJ, et al. Triggering receptor expressed on myeloid cells (TREM)-1 participates in Schistosoma mansoni inflammatory responses[J]. Parasite Immunol, 2011, 33(5):276-286.
doi: 10.1111/j.1365-3024.2011.01284.x
pmid: 21332515
|
[24] |
Liu L, Yang Y, Zhou JY, et al. Porphyromonas gingivalis lipopolysaccharide regulates macrophage polarization via triggering receptors expressed on myeloid cells-1[J]. Chin J Stomatol, 2021, 56(2):175-181. (in Chinese)
|
|
( 刘琳, 杨芸, 周婕妤, 等. 牙龈卟啉单胞菌脂多糖通过髓样细胞触发受体-1调控巨噬细胞极化状态的研究[J]. 中华口腔医学杂志, 2021, 56(2):175-181.)
|