中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (3): 380-385.doi: 10.12140/j.issn.1000-7423.2021.03.014
陈玉莹1,2(), 王晓婷2, 戴洋1,2,*(
), 曹俊1,2
收稿日期:
2020-09-14
修回日期:
2020-10-28
出版日期:
2021-06-30
发布日期:
2021-07-05
通讯作者:
戴洋
作者简介:
陈玉莹(1996-),女,硕士研究生,从事寄生虫感染免疫研究。E-mail: 18826108801@163.com
基金资助:
CHEN Yu-ying1,2(), WANG Xiao-ting2, DAI Yang1,2,*(
), CAO Jun1,2
Received:
2020-09-14
Revised:
2020-10-28
Online:
2021-06-30
Published:
2021-07-05
Contact:
DAI Yang
Supported by:
摘要:
炎症是由机体应对病原体入侵或组织损伤产生的一种复杂的保护性反应,心血管疾病、糖尿病、哮喘、肥胖症等均为炎症相关疾病。近年来,大量证据表明,蠕虫及其来源分子对炎症性疾病具有有效的干预作用,故提出了“蠕虫疗法”这一概念。由于接种活体蠕虫面临较大伦理及安全性方面的争议,目前研究热点聚焦于蠕虫源性抗炎效应分子的筛选、结构解析、抗炎活性的鉴定及验证等方面。本文对蠕虫来源的抗炎活性分子及其干预炎症性疾病作用机制的最新进展进行综述。
中图分类号:
陈玉莹, 王晓婷, 戴洋, 曹俊. 蠕虫及其来源分子干预炎症性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 380-385.
CHEN Yu-ying, WANG Xiao-ting, DAI Yang, CAO Jun. Progress on the intervention of inflammatory conditions by helminthes and their derived molecules[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(3): 380-385.
[1] | King CH. Helminthiasis epidemiology and control: scoring successes and meeting the remaining challenges[J]. Adv Parasitol, 2019,103:11-30. |
[2] |
Marques-Rocha JL, Samblas M, Milagro FI, et al. Noncoding RNAs, cytokines, and inflammation-related diseases[J]. FASEB J, 2015,29(9):3595-3611.
doi: 10.1096/fj.14-260323 |
[3] |
Sanya RE, Nkurunungi G, Andia Biraro I, et al. A life without worms[J]. Trans R Soc Trop Med Hyg, 2017,111(1):3-11.
doi: 10.1093/trstmh/trx010 |
[4] |
Rook GA. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the ‘hygiene’ or ‘old friends’ hypojournal[J]. Clin Exp Immunol, 2010,160(1):70-79.
doi: 10.1111/j.1365-2249.2010.04133.x |
[5] |
Leone DA, Rees AJ, Kain R. Dendritic cells and routing cargo into exosomes[J]. Immunol Cell Biol, 2018,96(7):683-693.
doi: 10.1111/imcb.2018.96.issue-7 |
[6] |
Finlay CM, Walsh KP, Mills KH. Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases[J]. Immunol Rev, 2014,259(1):206-230.
doi: 10.1111/imr.12164 |
[7] |
Flohr C, Tuyen LN, Lewis S, et al. Poor sanitation and helminth infection protect against skin sensitization in vietnamese children: a cross-sectional study[J]. J Allergy Clin Immunol, 2006,118(6):1305-1311.
doi: 10.1016/j.jaci.2006.08.035 |
[8] |
Saunders KA, Raine T, Cooke A, et al. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection[J]. Infect Immun, 2007,75(1):397-407.
pmid: 17043101 |
[9] |
Hartmann S, Schnoeller C, Dahten A, et al. Gastrointestinal nematode infection interferes with experimental allergic airway inflammation but not atopic dermatitis[J]. Clin Exp Allergy, 2009,39(10):1585-1596.
doi: 10.1111/cea.2009.39.issue-10 |
[10] |
Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis[J]. Ann Neurol, 2007,61(2):97-108.
pmid: 17230481 |
[11] |
Summers RW, Elliott DE, Qadir K, et al. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease[J]. Am J Gastroenterol, 2003,98(9):2034-2041.
pmid: 14499784 |
[12] |
Mulvenna J, Hamilton B, Nagaraj SH, et al. Proteomics analysis of the excretory/secretory component of the blood-feeding stage of the hookworm, Ancylostoma caninum[J]. Mol Cell Proteomics, 2009,8(1):109-121.
doi: 10.1074/mcp.M800206-MCP200 |
[13] |
Harnett W. Secretory products of helminth parasites as immunomodulators[J]. Mol Biochem Parasitol, 2014,195(2):130-136.
doi: 10.1016/j.molbiopara.2014.03.007 |
[14] |
Lund ME, O’Brien BA, Hutchinson AT, et al. Secreted proteins from the helminth Fasciola hepatica inhibit the initiation of autoreactive T cell responses and prevent diabetes in the NOD mouse[J]. PLoS One, 2014,9(1):e86289.
doi: 10.1371/journal.pone.0086289 |
[15] |
Hübner MP, Stocker JT, Mitre E. Inhibition of type 1 diabetes in Filaria-infected non-obese diabetic mice is associated with a T helper type 2 shift and induction of FoxP3+ regulatory T cells[J]. Immunology, 2009,127(4):512-522.
doi: 10.1111/j.1365-2567.2008.02958.x pmid: 19016910 |
[16] |
Ajendra J, Berbudi A, Hoerauf A, et al. Combination of worm antigen and proinsulin prevents type 1 diabetes in NOD mice after the onset of insulitis[J]. Clin Immunol, 2016,164:119-122.
doi: 10.1016/j.clim.2016.02.005 |
[17] |
Tang H, Liang YB, Chen ZB, et al. Soluble egg antigen activates M2 macrophages via the STAT6 and PI3K pathways, and Schistosoma japonicum alternatively activates macrophage polarization to improve the survival rate of septic mice[J]. J Cell Biochem, 2017,118(12):4230-4239.
doi: 10.1002/jcb.v118.12 |
[18] |
Tang CL, Yu XH, Li Y, et al. Schistosoma japonicum soluble egg antigen protects against type 2 diabetes in Leprdb/db mice by enhancing regulatory T cells and Th2 cytokines[J]. Front Immunol, 2019,10:1471.
doi: 10.3389/fimmu.2019.01471 |
[19] |
Wang LF, Yu ZL, Wan S, et al. Exosomes derived from dendritic cells treated with Schistosoma japonicum soluble egg antigen attenuate DSS-induced colitis[J]. Front Pharmacol, 2017,8:651.
doi: 10.3389/fphar.2017.00651 |
[20] |
Samanta S, Rajasingh S, Drosos N, et al. Exosomes: new molecular targets of diseases[J]. Acta Pharmacol Sin, 2018,39(4):501-513.
doi: 10.1038/aps.2017.162 |
[21] |
Eichenberger RM, Ryan S, Jones L, et al. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice[J]. Front Immunol, 2018,9:850.
doi: 10.3389/fimmu.2018.00850 pmid: 29760697 |
[22] |
Buck AH, Coakley G, Simbari F, et al. Erratum: exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity[J]. Nat Commun, 2015,6:8772.
doi: 10.1038/ncomms9772 pmid: 26490107 |
[23] |
Harnett W, Harnett MM, Byron O. Structural/functional aspects of ES-62: a secreted immunomodulatory phosphorylcholine-containing filarial nematode glycoprotein[J]. Curr Protein Pept Sci, 2003,4(1):59-71.
doi: 10.2174/1389203033380368 |
[24] |
Eason RJ, Bell KS, Marshall FA, et al. The helminth product, ES-62 modulates dendritic cell responses by inducing the selective autophagolysosomal degradation of TLR-transducers, as exemplified by PKCδ[J]. Sci Rep, 2016,6:37276.
doi: 10.1038/srep37276 |
[25] |
Coltherd JC, Rodgers DT, Lawrie RE, et al. The parasitic worm-derived immunomodulator, ES-62 and its drug-like small molecule analogues exhibit therapeutic potential in a model of chronic asthma[J]. Sci Rep, 2016,6:19224.
doi: 10.1038/srep19224 |
[26] |
Rodgers DT, Pineda MA, Suckling CJ, et al. Drug-like analogues of the parasitic worm-derived immunomodulator ES-62 are therapeutic in the MRL/Lpr model of systemic lupus erythematosus[J]. Lupus, 2015,24(13):1437-1442.
doi: 10.1177/0961203315591031 pmid: 26085597 |
[27] |
Pineda MA, Eason RJ, Harnett MM, et al. From the worm to the pill, the parasitic worm product ES-62 raises new horizons in the treatment of rheumatoid arthritis[J]. Lupus, 2015,24(4/5):400-411.
doi: 10.1177/0961203314560004 |
[28] |
Pineda MA, Lumb F, Harnett MM, et al. ES-62, a therapeutic anti-inflammatory agent evolved by the filarial nematode Acanthocheilonema viteae[J]. Mol Biochem Parasitol, 2014,194(1/2):1-8.
doi: 10.1016/j.molbiopara.2014.03.003 |
[29] |
Al-Riyami L, Pineda MA, Rzepecka J, et al. Designing anti-inflammatory drugs from parasitic worms: a synthetic small molecule analogue of the Acanthocheilonema viteae product ES-62 prevents development of collagen-induced arthritis[J]. J Med Chem, 2013,56(24):9982-10002.
doi: 10.1021/jm401251p |
[30] |
Coronado S, Zakzuk J, Regino R, et al. Ascaris lumbricoides cystatin prevents development of allergic airway inflammation in a mouse model[J]. Front Immunol, 2019,10:2280.
doi: 10.3389/fimmu.2019.02280 pmid: 31611876 |
[31] | Yao JX, Fu BQ. Research progress on cystatin of parasitic Nematodes[J]. Chin J Parasitol Parasit Dis, 2012,30(2):146-151. (in Chinese) |
( 姚菊霞, 付宝权. 寄生性线虫半胱氨酸蛋白酶抑制剂研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012,30(2):146-151.) | |
[32] | Bisht N, Khatri V, Chauhan N, et al. Cystatin from filarial parasites suppress the clinical symptoms and pathology of experimentally induced colitis in mice by inducing T-regulatory cells, B1-cells, and alternatively activated macrophages[J]. Biomedicines, 2019,7(4):E85. |
[33] |
Klotz C, Ziegler T, Figueiredo AS, et al. A helminth immunomodulator exploits host signaling events to regulate cytokine production in macrophages[J]. PLoS Pathog, 2011,7(1):e1001248.
doi: 10.1371/journal.ppat.1001248 |
[34] |
Schuijs MJ, Hartmann S, Selkirk ME, et al. The helminth-derived immunomodulator AvCystatin reduces virus enhanced inflammation by induction of regulatory IL-10+ T cells[J]. PLoS One, 2016,11(8):e0161885.
doi: 10.1371/journal.pone.0161885 |
[35] |
Zhan B, Gupta R, Wong SP, et al. Molecular cloning and characterization of Ac-TMP-2, a tissue inhibitor of metalloproteinase secreted by adult Ancylostoma caninum[J]. Mol Biochem Parasitol, 2008,162(2):142-148.
doi: 10.1016/j.molbiopara.2008.08.008 |
[36] | Navarro S, Pickering DA, Ferreira IB, et al. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma[J]. Sci Transl Med, 2016,8(362):362ra143. |
[37] |
Driss V, El Nady M, Delbeke M, et al. The schistosome glutathione S-transferase P28GST, a unique helminth protein, prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils[J]. Mucosal Immunol, 2016,9(2):322-335.
doi: 10.1038/mi.2015.62 pmid: 26174763 |
[38] |
Hervé M, Angeli V, Pinzar E, et al. Pivotal roles of the parasite PGD2 synthase and of the host D prostanoid receptor 1 in schistosome immune evasion[J]. Eur J Immunol, 2003,33(10):2764-2772.
doi: 10.1002/(ISSN)1521-4141 |
[39] |
Riveau G, Deplanque D, Remoué F, et al. Safety and immunogenicity of rSh28GST antigen in humans: phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis[J]. PLoS Negl Trop Dis, 2012,6(7):e1704.
doi: 10.1371/journal.pntd.0001704 |
[40] | Capron M, Béghin L, Leclercq C, et al. Safety of P28GST, a protein derived from a schistosome helminth parasite, in patients with Crohn’s disease: a pilot study (ACROHNEM)[J]. J Clin Med, 2019,9(1):E41. |
[41] |
Shen J, Wang LF, Peng M, et al. Recombinant Sj16 protein with novel activity alleviates hepatic granulomatous inflammation and fibrosis induced by Schistosoma japonicum associated with M2 macrophages in a mouse model[J]. Parasit Vectors, 2019,12(1):457.
doi: 10.1186/s13071-019-3697-z |
[42] |
Sun X, Liu YH, Lv ZY, et al. rSj16, a recombinant protein of Schistosoma japonicum-derived molecule, reduces severity of the complete Freund’s adjuvant-induced adjuvant arthritis in rats’ model[J]. Parasite Immunol, 2010,32(11/12):739-748.
doi: 10.1111/pim.2010.32.issue-11-12 |
[43] |
Wang L, Xie H, Xu L, et al. rSj16 protects against DSS-induced colitis by inhibiting the PPAR-α signaling pathway[J]. Theranostics, 2017,7(14):3446-3460.
doi: 10.7150/thno.20359 |
[44] | de Los Reyes Jiménez M, Lechner A, Alessandrini F, et al. An anti-inflammatory eicosanoid switch mediates the suppression of type-2 inflammation by helminth larval products[J]. Sci Transl Med, 2020,12(540):eaay0605. |
[45] |
Everts B, Hussaarts L, Driessen NN, et al. Schistosome-derived Omega-1 drives Th2 polarization by suppressing protein synjournal following internalization by the mannose receptor[J]. J Exp Med, 2012,209(10):1753-1767.
doi: 10.1084/jem.20111381 |
[46] |
Hams E, Bermingham R, Wurlod FA, et al. The helminth T2 RNase ω1 promotes metabolic homeostasis in an IL-33- and group 2 innate lymphoid cell-dependent mechanism[J]. FASEB J, 2016,30(2):824-835.
doi: 10.1096/fsb2.v30.2 |
[47] |
Knuhr K, Langhans K, Nyenhuis S, et al. Schistosoma mansoni egg-released IPSE/alpha-1 dampens inflammatory cytokine responses via basophil interleukin (IL)-4 and IL-13[J]. Front Immunol, 2018,9:2293.
doi: 10.3389/fimmu.2018.02293 |
[48] |
Mbanefo EC, Le L, Zee R, et al. IPSE, a urogenital parasite-derived immunomodulatory protein, ameliorates ifosfamide-induced hemorrhagic cystitis through downregulation of pro-inflammatory pathways[J]. Sci Rep, 2019,9(1):1586.
doi: 10.1038/s41598-018-38274-z |
[49] |
Robinson MW, Donnelly S, Hutchinson AT, et al. A family of helminth molecules that modulate innate cell responses via molecular mimicry of host antimicrobial peptides[J]. PLoS Pathog, 2011,7(5):e1002042.
doi: 10.1371/journal.ppat.1002042 |
[50] |
Crowe J, Lumb FE, Harnett MM, et al. Parasite excretory-secretory products and their effects on metabolic syndrome[J]. Parasite Immunol, 2017,39(5):e12410.
doi: 10.1111/pim.2017.39.issue-5 |
[51] |
Brosschot TP, Reynolds LA. The impact of a helminth-modified microbiome on host immunity[J]. Mucosal Immunol, 2018,11(4):1039-1046.
doi: 10.1038/s41385-018-0008-5 pmid: 29453411 |
[52] |
Zaiss MM, Rapin A, Lebon L, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation[J]. Immunity, 2015,43(5):998-1010.
doi: 10.1016/j.immuni.2015.09.012 |
[1] | 潘筱雯, 吴银娟, 何晴, 殷颖璇, 李学荣. 寄生蠕虫外泌体及其功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 390-395. |
[2] | 何威, 周必英. 感染蠕虫后宿主T细胞免疫应答相关信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 223-227. |
[3] | 胡玥, 吕志跃. 代谢组学在医学蠕虫研究中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 703-709. |
[4] | 张小凡, 巩文词, 沈玉娟. 胞外囊泡在寄生蠕虫中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 648-654. |
[5] | 臧新中, 李焕璋, 钱门宝, 朱慧慧, 周长海, 陈颖丹, 秦志强, 李石柱. 重点蠕虫病伤残权重研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(5): 510-515. |
[6] | 刘可, 黄海斌, 杨桂连. miRNA在寄生虫宿主免疫调控中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4): 405-408. |
[7] | 张雅兰, 朱岩昆, 陈伟奇, 邓艳, 蔺西萌, 李蓬, 张红卫, 许汴利. 2015年河南省城镇地区人体肠道蠕虫感染现状调查[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(2): 135-139. |
[8] | 魏绮珮, 齐永芬, 鱼艳荣. 内质网应激在寄生虫感染中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(6): 617-622. |
[9] | 唐春莲1,申志琴1,雷家慧2,王力霞1*. 蠕虫感染在预防与治疗炎症性肠病中的作用及机制[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(6): 17-571-576. |
[10] | 刘建枝,夏晨阳*,冯静,宋天增,马兴斌,唐文强. 西藏尼木县山羊蠕虫感染情况调查[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(1): 14-8-10. |
[11] | 丁忆晗1,周瑞2,杨小迪1*,张莉莉1. 过继转移在蠕虫调控过敏性和自身免疫性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(4): 11-290-294. |
[12] | 郭爱叶1 *,蔺西萌2,张玉琴2,吴惠3. 细胞因子IL-4、IL-9和IgE在肠道蠕虫感染者中的水平及临床意义[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(2): 7-110-104. |
[13] | 姜晶1,2,赵权2,杨桂连1 *. 树突状细胞在蠕虫感染免疫应答中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(2): 16-147-150. |
[14] | 冯胜勇,邵长春,朱兴全,徐民俊*. 蠕虫特有的微小RNA-36研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(1): 14-68-71. |
[15] | 刘泽华,赵俊龙*. 抗菌肽抗寄生虫作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(5): 11-377-379,384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||