CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2019, Vol. 37 ›› Issue (4): 472-480.doi: 10.12140/j.issn.1000-7423.2019.04.018
• REVIEWS • Previous Articles Next Articles
Jun WANG(), Yan SHEN, Yue LI, Ya ZHAO*(
)
Received:
2018-11-30
Online:
2019-08-30
Published:
2019-09-05
Contact:
Ya ZHAO
E-mail:wangjun1802@fmmu.edu.cn;zhaoya@fmmu.edu.cn
Supported by:
CLC Number:
Jun WANG, Yan SHEN, Yue LI, Ya ZHAO. Recent progress in immune checkpoint molecules in Plasmodium infection and immunity[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(4): 472-480.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2019.04.018
[1] | World Health Organization.World Malaria Report 2017[R]. Geneva: WHO, 2017: 17-18. |
[2] | 张丽, 丰俊, 张少森, 等. 2017年全国消除疟疾进展及疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3): 201-209. |
[3] | 曹淳力,郭家钢. “一带一路”建设中重要寄生虫病防控面临的挑战与对策[J]. 中国血吸虫病防治杂志, 2018, 30(2): 111-116. |
[4] | Talundzic E, Okoth SA, Congpuong K, et al. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign[J]. PLoS Pathog, 2015, 11(4): e1004789. |
[5] | Lu F, Culleton R, Zhang MH, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in africa[J]. N Engl J Med, 2017, 376(10): 991-993. |
[6] | Matuschewski K.Vaccines against malaria-still a long way to go[J]. FEBS J, 2017, 284(16): 2560-2568. |
[7] | Hoffman SL, Vekemans J, Richie TL, et al. The march toward malaria vaccines[J]. Vaccine, 2015, 33(Suppl 4): D13-D23. |
[8] | RTS, S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial[J]. Lancet, 2015, 386(9988): 31-45. |
[9] | Olotu A, Fegan G, Wambua J, et al. Four-year efficacy of RTS, S/AS01E and its interaction with malaria exposure[J]. N Engl J Med, 2013, 368(12): 1111-1120. |
[10] | Mordmüller B, Surat G, Lagler H, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine[J]. Nature, 2017, 542(7642): 445-449. |
[11] | Jiang LB, Mu JB, Zhang QF, et al. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum[J]. Nature, 2013, 499(7457): 223-227. |
[12] | Ashley EA, Pyae Phyo A, Woodrow CJ.Malaria[J]. Lancet, 2018, 391(10130): 1608-1621. |
[13] | Ghazanfari N, Mueller SN, Heath WR.Cerebral malaria in mouse and man[J]. Front Immunol, 2018, 9: 2016. |
[14] | Howland SW, Poh CM, Gun SY, et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria[J]. EMBO Mol Med, 2013, 5(7): 984-999. |
[15] | Howland SW, Poh CM, Rénia L.Activated brain endothelial cells cross-present malaria antigen[J]. PLoS Pathog, 2015, 11(6): e1004963. |
[16] | 华海涌, 孙芳, 陈伟, 等. 世界卫生组织《重症疟疾管理实用手册》(第三版)解读[J]. 中国热带医学, 2018, 18(7): 643-649. |
[17] | Schildberg FA, Klein SR, Freeman GJ, et al. Coinhibitory pathways in the B7-CD28 ligand-receptor family[J]. Immunity, 2016, 44(5): 955-972. |
[18] | Wykes MN, Lewin SR.Immune checkpoint blockade in infectious diseases[J]. Nat Rev Immunol, 2018, 18(2): 91-104. |
[19] | Baumeister SH, Freeman GJ, Dranoff G, et al. Coinhibitory pathways in immunotherapy for cancer[J]. Annu Rev Immunol, 2016, 34: 539-573. |
[20] | Callahan MK, Postow MA, Wolchok JD.Targeting T cell Co-receptors for cancer therapy[J]. Immunity, 2016, 44(5): 1069-1078. |
[21] | Wykes MN, Horne-Debets JM, Leow CY, et al. Malaria drives T cells to exhaustion[J]. Front Microbiol, 2014, 5: 249. |
[22] | Won TJ, Jung YJ, Kwon SJ, et al. Forced expression of programmed death-1 gene on T cell decreased the incidence of type 1 diabetes[J]. Arch Pharm Res, 2010, 33(11): 1825-1833. |
[23] | Wang GH, Hu P, Yang J, et al. The effects of PDL-Ig on collagen-induced arthritis[J]. Rheumatol Int, 2011, 31(4): 513-519. |
[24] | Zhou H, Xiong LJ, Wang YX, et al. Treatment of murine lupus with PD-LIg[J]. Clin Immunol, 2016, 162: 1-8. |
[25] | Vincenti F, Rostaing L, Grinyo J, et al. Belatacept and long-term outcomes in kidney transplantation[J]. N Engl J Med, 2016, 374(4): 333-343. |
[26] | Fernandez-Ruiz D, Ng WY, Holz LE, et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection[J]. Immunity, 2016, 45(4): 889-902. |
[27] | Opata MM, Ibitokou SA, Carpio VH, et al. Protection by and maintenance of CD4 effector memory and effector T cell subsets in persistent malaria infection[J]. PLoS Pathog, 2018, 14(4): e1006960. |
[28] | Chua CL, Brown G, Hamilton JA, et al. Monocytes and macrophages in malaria: protection or pathology?[J]. Trends Parasitol, 2013, 29(1): 26-34. |
[29] | Chandele A, Mukerjee P, Das G, et al. Phenotypic and functional profiling of malaria-induced CD8 and CD4 T cells during blood-stage infection with Plasmodium yoelii[J]. Immunology, 2011, 132(2): 273-286. |
[30] | Bayarsaikhan G, Miyakoda M, Yamamoto K, et al. Activation and exhaustion of antigen-specific CD8+ T cells occur in different splenic compartments during infection with Plasmodium berghei[J]. Parasitol Int, 2017, 66(3): 227-235. |
[31] | Horne-Debets JM, Faleiro R, Karunarathne DS, et al. PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria[J]. Cell Rep, 2013, 5(5): 1204-1213. |
[32] | Butler NS, Moebius J, Pewe LL, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection[J]. Nat Immunol, 2011, 13(2): 188-195. |
[33] | Doe HT, Kimura D, Miyakoda M, et al. Expression of PD-1/LAG-3 and cytokine production by CD4(+) T cells during infection with Plasmodium parasites[J]. Microbiol Immunol, 2016, 60(2): 121-131. |
[34] | Illingworth J, Butler NS, Roetynck S, et al. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion[J]. J Immunol, 2013, 190(3): 1038-1047. |
[35] | Costa PA, Leoratti FM, Figueiredo MM, et al. Induction of inhibitory receptors on T cells during Plasmodium vivax malaria impairs cytokine production[J]. J Infect Dis, 2015, 212(12): 1999-2010. |
[36] | Gogoi D, Biswas D, Borkakoty B, et al. Exposure to Plasmodium vivax is associated with the increased expression of exhaustion markers on γδ T lymphocytes[J]. Parasite Immunol, 2018, 40(12): e12594. |
[37] | Hou N, Zou Y, Piao XY, et al. T-cell immunoglobulin-and mucin-domain-containing molecule 3 signaling blockade improves cell-mediated immunity against malaria[J]. J Infect Dis, 2016, 214(10): 1547-1556. |
[38] | Schlotmann T, Waase I, Jülch C, et al. CD4 alphabeta T lymphocytes express high levels of the T lymphocyte antigen CTLA-4 (CD152) in acute malaria[J]. J Infect Dis, 2000, 182(1): 367-370. |
[39] | Braun N, Marfo Y, Von Gärtner C, et al. CTLA-4 positive T cells in contrast to procalcitonin plasma levels discriminate between severe and uncomplicated Plasmodium falciparum malaria in Ghanaian children[J]. Trop Med Int Health, 2003, 8(11): 1018-1024. |
[40] | Tartz S, Kamanova J, Simsova M, et al. Immunization with a circumsporozoite epitope fused to Bordetella pertussis adenylate cyclase in conjunction with cytotoxic T-lymphocyte-associated antigen 4 blockade confers protection against Plasmodium berghei liver-stage malaria[J]. Infect Immun, 2006, 74(4): 2277-2285. |
[41] | Kisielow M, Kisielow J, Capoferri-Sollami G, et al. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells[J]. Eur J Immunol, 2005, 35(7): 2081-2088. |
[42] | Lino AC, Dang VD, Lampropoulou V, ,et al. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells[J]. Immunity. 2018, 49(1): 120-133.e9. |
[43] | Karunarathne DS, Horne-Debets JM, Huang JX, et al. Programmed death-1 ligand 2-mediated regulation of the PD-L1 to PD-1 Axis is essential for establishing CD4(+) T cell immunity[J]. Immunity, 2016, 45(2): 333-345. |
[44] | Hafalla JC, Claser C, Couper KN, et al. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology[J]. PLoS Pathog, 2012, 8(2): e1002504. |
[45] | Spence PJ, Langhorne J.T cell control of malaria pathogenesis[J]. Curr Opin Immunol, 2012, 24(4): 444-448. |
[46] | Triller G, Scally SW, Costa G, ,et al. Natural parasite exposure induces protective human anti-malarial antibodies[J]. Immunity.2017, 47(6): 1197-1209.e10. |
[47] | Crotty S.T follicular helper cell differentiation, function, and roles in disease[J]. Immunity, 2014, 41(4): 529-542. |
[48] | 赵晨浩, 刘太平, 赵婷婷, 等. Balb/c小鼠PD-1敲除后抑制疟原虫生长及其机制初探[J]. 免疫学杂志, 2014, 30(2): 100-104. |
[49] | Liu TP, Lu X, Zhao CH, et al. PD-1 deficiency enhances humoral immunity of malaria infection treatment vaccine[J]. Infect Immun, 2015, 83(5): 2011-2017. |
[50] | Liu TP, Cheng XY, Ding Y, et al. PD-1 deficiency promotes TFH cells expansion in ITV-immunized mice by upregulating cytokines secretion[J]. Parasit Vectors, 2018, 11(1): 397. |
[51] | Josefowicz SZ, Lu LF, Rudensky AY.Regulatory T cells: mechanisms of differentiation and function[J]. Annu Rev Immunol, 2012, 30: 531-564. |
[52] | Minigo G, Woodberry T, Piera KA, et al. Parasite-dependent expansion of TNF receptor II-positive regulatory T cells with enhanced suppressive activity in adults with severe malaria[J]. PLoS Pathog, 2009, 5(4): e1000402. |
[53] | Gautron AS, Dominguez-Villar M, de Marcken M, et al. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells[J]. Eur J Immunol, 2014, 44(9): 2703-2711. |
[54] | Sega EI, Leveson-Gower DB, Florek M, et al. Role of lymphocyte activation gene-3 (Lag-3) in conventional and regulatory T cell function in allogeneic transplantation[J]. PLoS One, 2014, 9(1): e86551. |
[55] | Kurup SP, Obeng-Adjei N, Anthony SM, et al. Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4[J]. Nat Med, 2017, 23(10): 1220-1225. |
[56] | Randall LM, Amante FH, McSweeney KA, et al. Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities[J]. Infect Immun, 2008, 76(7): 3312-3320. |
[57] | Cambos M, Bélanger B, Jacques A, et al. Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion[J]. Int J Parasitol, 2008, 38(2): 229-238. |
[58] | Hansen DS, Schofield L.Natural regulatory T cells in malaria: host or parasite allies?[J]. PLoS Pathog, 2010, 6(4): e1000771. |
[59] | Parsons E, Epstein J, Sedegah M, et al. Decrease in circulating CD25(hi)Foxp3(+) regulatory T cells following vaccination with the candidate malaria vaccine RTS, S[J]. Vaccine, 2016, 34(38): 4618-4625. |
[60] | Beldi-Ferchiou A, Caillat-Zucman S.Control of NK cell activation by immune checkpoint molecules[J]. Int J Mol Sci, 2017, 18(10): E2129. |
[61] | Hou N, Jiang N, Zou Y, et al. Down-regulation of tim-3 in monocytes and macrophages in Plasmodium infection and its association with parasite clearance[J]. Front Microbiol, 2017, 8: 1431. |
[62] | Jacobs T, Graefe SE, Niknafs S, et al. Murine malaria is exacerbated by CTLA-4 blockade[J]. J Immunol, 2002, 169(5): 2323-2329. |
[63] | Khandare AV, Bobade D, Deval M, et al. Expression of negative immune regulatory molecules, pro-inflammatory chemokine and cytokines in immunopathology of ECM developing mice[J]. Acta Trop, 2017, 172: 58-63. |
[64] | Opata MM, Carpio VH, Ibitokou SA, et al. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells[J]. J Immunol, 2015, 194(11): 5346-5354. |
[65] | Lepenies B, Gaworski I, Tartz S, et al. CTLA-4 blockade differentially influences the outcome of non-lethal and lethal Plasmodium yoelii infections[J]. Microbes Infect, 2007, 9(6): 687-694. |
[66] | Dulgerian LR, Garrido VV, Stempin CC, et al. Programmed death ligand 2 regulates arginase induction and modifies Trypanosoma cruzi survival in macrophages during murine experimental infection[J]. Immunology, 2011, 133(1): 29-40. |
[67] | Anderson AC, Joller N, Kuchroo VK.Lag-3, tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation[J]. Immunity, 2016, 44(5): 989-1004. |
[68] | Jacobs T, Plate T, Gaworski I, et al. CTLA-4-dependent mechanisms prevent T cell induced-liver pathology during the erythrocyte stage of Plasmodium berghei malaria[J]. Eur J Immunol, 2004, 34(4): 972-980. |
[69] | Liu JF, Huang SG, Su XZ, et al. Blockage of galectin-receptor interactions by α-lactose exacerbates Plasmodium berghei- induced pulmonary immunopathology[J]. Sci Rep, 2016, 6: 32024. |
[70] | Liu JF, Xiao SY, Huang SG, et al. Upregulated Tim-3/galectin-9 expressions in acute lung injury in a murine malarial model[J]. Parasitol Res, 2016, 115(2): 587-595. |
[71] | Mackroth MS, Abel A, Steeg C, et al. Acute malaria induces PD1+CTLA4+ effector T cells with cell-extrinsic suppressor function[J]. PLoS Pathog, 2016, 12(11): e1005909. |
[72] | Villegas-Mendez A, Inkson CA, Shaw TN, et al. Long-lived CD4+IFN-γ+ T cells rather than short-lived CD4+IFN-γ+IL-10+ T cells initiate rapid IL-10 production to suppress anamnestic T cell responses during secondary malaria infection[J]. J Immunol, 2016, 197(8): 3152-3164. |
[73] | Obeng-Adjei N, Portugal S, Tran TM, et al. Circulating th1-cell-type tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children[J]. Cell Rep, 2015, 13(2): 425-439. |
[74] | Costa PAC, Figueiredo MM, Diniz SQ, et al. Plasmodium vivax infection impairs regulatory T-cell suppressive function during acute malaria[J]. J Infect Dis, 2018, 218(8): 1314-1323. |
[75] | Haque A, Best SE, Amante FH, et al. CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo[J]. PLoS Pathog, 2010, 6(12): e1001221. |
[76] | Wei X, Li Y, Sun XD, et al. Erythropoietin protects against murine cerebral malaria through actions on host cellular immunity[J]. Infect Immun, 2014, 82(1): 165-173. |
[77] | Van Braeckel-Budimir N, Kurup SP, Harty JT. Regulatory issues in immunity to liver and blood-stage malaria[J]. Curr Opin Immunol, 2016, 42: 91-97. |
[1] | GONG Yanfeng, LI Zifen, TANG Guai, HUANG Meiqin, ZHOU Binghua, HU Qiang. Epidemiological characteristics of malaria in Jiangxi Province from 2015 to 2022 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 586-592. |
[2] | WEI Luanting, LI Runze, GUAN Liangchao, ZHANG Qianyu, LI Cheng, CAO Yaming, ZHAO Yan. Research progress of antimalarial drugs [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 486-491. |
[3] | ZHANG Le, XIA Jiawei, LI Xiang, MA Zhongxu, JIANG Jianjie, TANG Yalin, LIU Shu, ZHANG Kaiyi. Clinical analysis of imported COVID-19 cases complicated with severe falciparum malaria [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 506-509. |
[4] | CAO Wei, WANG Yi, ZHANG Xizhi, TONG Guodong, YANG Chao, SHEN Yan, ZHAO Ya. Research progress in adjunctive therapy of cerebral malaria [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 361-373. |
[5] | GENG Yan, LAN Ziyao, LI Yang, DAI Jiarui, CAI Shan, LU Lidan, HUANG Yuting, SHI Weifang, SHE Danya. Epidemiological analysis of malaria in Guizhou Province from 2017 to 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 384-388. |
[6] | ZHANG Li, YI Boyu, YIN Jianhai, XIA Zhigui. Epidemiological characteristics of malaria in China, 2022 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 137-141. |
[7] | CHEN Zhuyun, OUYANG Rong, XIAO Lizhen, LIN Yaoying, XIE Hanguo, ZHANG Shanying. Current status of the primary surveillance and response system during the post malaria elimination phase in Fujian Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 170-175. |
[8] | SUN Jun. The biological significance of malarial hemozoin’s formation [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 209-212. |
[9] | CHEN Zhihui, HONG Jing, ZHANG Rongbing, YANG Qian, YE Qing, LI Jianrong, TIAN Rong. Epidemiological analysis on malaria cases reported in Kunming during 2006—2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 233-237. |
[10] | LIU Jiancheng, XU Yan, WANG Longjiang, KONG Xiangli, WANG Yongbin, LI Yuejin. Surveillance on imported malaria in Linyi City of Shandong Province from 2015 to 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 249-252. |
[11] | ZHANG Yaoguang, JIANG Li, WANG Zhenyu, ZHU Min, ZHU Qian, MA Xiaojiang, YU Qing, Chen Jian. Analysis of the causes of misdiagnosis of seven imported malaria cases in Shanghai from 2020 to 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 68-74. |
[12] | LI Su-hua, JI Peng-hui, ZHOU Rui-min, HE Zhi-quan, QIAN Dan, YANG Cheng-yun, LIU Ying, LU De-ling, WANG Hao, ZHANG Hong-wei, ZHAO Yu-ling. Appraisal of diagnosis capacity of malaria reference laboratories in Henan Province during 2015—2019 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 748-753. |
[13] | LI Mei, ZHOU He-jun, XIA Zhi-gui, ZHANG Li, TU Hong, YIN Jian-hai. Quality evaluation on the preparation of the malaria blood smears at the national level in 2019 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 754-759. |
[14] | ZHAO Hui, XIANG Zheng, ZHOU Long-can, PAN Mao-hua, YANG Zhao-qing. Research progress of amodiaquine as an antimalarial drug [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 786-791. |
[15] | JI Peng-hui, JIANG Tian-tian, HE Zhi-quan, ZHOU Rui-min, LI Su-hua, YANG Cheng-yun, QIAN Dan, LIU Ying, WANG Hao, ZHANG Hong-wei. Analysis on epidemiological characteristics of imported quartan malaria in Henan Province from 2011 to 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 801-805. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||