CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2017, Vol. 35 ›› Issue (2): 185-192.
• REVIEWS • Previous Articles Next Articles
Xiao-jie LIU, Tie-bo MAO, Rui ZHOU*()
Received:
2016-06-20
Online:
2017-04-20
Published:
2017-05-02
Contact:
Rui ZHOU
E-mail:ruizhou@whu.edu.cn
Supported by:
miRNAs | 变化 | 转录因子 | 靶基因 | 微小隐孢子虫感染后的免疫作用 | 参考文献 |
---|---|---|---|---|---|
let-7i miR-98 miR-513 mir-424-503 miR-221 miR-27b | 下调 下调 下调 下调 下调 上调 | P50, C/EBPβ,HDAC3 尚未确定 尚未确定 P50, HDACs 尚未确定 P65 | TLR4 SNAP23 CIS SOCS4 B7-H1 CX3CL1 ICAM-1 KSRP | 调控上皮细胞抗微小隐孢子虫感染 促进感染上皮细胞中外泌体的释放 调控NF-kB信号通路活性 抑制信号转导分子和转录激活因子的磷酸化 调控胆管上皮细胞炎症反应 调控胆管上皮细胞的炎症反应 调控上皮细胞与T细胞间的相互作用 调控iNOS和IL-8 mRNA的稳定性 | [50] [77] [51] [52] [58] [60] [23] [28] |
[1] | 顾有方, 汪凯, 刘德义, 等. 宠物犬蓝氏贾第鞭毛虫和隐孢子虫感染的分子检测[J].中国寄生虫学与寄生虫病杂志, 2015, 33(5): 362-367. |
[2] | 王东, 张媛媛.隐孢子虫感染昆明小鼠后肠道病理变化及螺旋霉素治疗效果[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(3): 225-228. |
[3] | 孙涛, 刘维, 王菊花, 等. 合肥地区奶牛源隐孢子虫的分离与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2011, 29(6):447-452. |
[4] | Striepen B.Parasitic infections: time to tackle cryptosporidiosis[J]. Nature, 2013, 503(7475): 189-191. |
[5] | Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries(the Global Enteric Multicenter Study, GEMS): a prospective, case-control study[J]. Lancet, 2013, 382(9888): 209-222. |
[6] | Goodgame RW.Understanding intestinal spore-forming protozoa: cryptosporidia, microsporidia, isospora, and cyclospora[J]. Ann Intern Med, 1996, 124(4): 429-441. |
[7] | Pierce KK, Kirkpatrick BD.Update on human infections caused by intestinal protozoa[J]. Curr Opin Gastroenterol, 2009, 25(1): 12-17. |
[8] | Putignani L, Menichella D.Global distribution, public health and clinical impact of the protozoan pathogen Cryptosporidium[J]. Interdiscip Perspect Infect Dis, 2010, 2010: 366-366. |
[9] | O’Donoghue PJ. Cryptosporidium and cryptosporidiosis in man and animals[J]. Int J Parasitol, 1995, 25(2): 139-195. |
[10] | 宋军澎, 赵继学, 高虹, 等. 长春地区医院就诊患者隐孢子虫感染的血清学检测[J]. 中国寄生虫学与寄生虫病杂志, 2011, 29(3): 239-243, 封3. |
[11] | 张小萍, 何艳燕, 朱倩, 等. 上海市饮用水和环境水中隐孢子虫和蓝氏贾第鞭毛虫污染状况调查[J]. 中国寄生虫学与寄生虫病杂志, 2010, 28(6): 435-438. |
[12] | 高姗姗, 吴绍强, 罗静,等. IMS-qPCR检测水源性微小隐孢子虫方法的建立[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(3): 180-184. |
[13] | Chen XM, Keithly JS, Paya CV, et al. Cryptosporidiosis[J]. N Engl J Med, 2002, 346(22): 1723-1731. |
[14] | Chen XM, O’Hara SP, Nelson JB, et al. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB[J]. J Immunol, 2005, 175(11): 7447-7456. |
[15] | Pantenburg B, Dann SM, Wang HC, et al. Intestinal immune response to human Cryptosporidium sp. infection[J]. Infect Immun, 2008, 76(1): 23-29. |
[16] | 周庆新, 李锦春, 徐前明, 等. 感染隐孢子虫奶牛血液免疫和抗氧化指标的变化[J].中国寄生虫学与寄生虫病杂志, 2012, 30(4): 301-304. |
[17] | Petry F, Jakobi V, Tessema TS.Host immune response to Cryptosporidium parvum infection[J]. Exp Parasitol, 2010, 126(3): 304-309. |
[18] | Kagnoff MF, Eckmann L.Epithelial cells as sensors for microbial infection[J]. J Clin Invest, 1997, 100(1): 6-10. |
[19] | Wang HC, Dann SM, Okhuysen PC, et al. High levels of CXCL10 are produced by intestinal epithelial cells in AIDS patients with active cryptosporidiosis but not after reconstitution of immunity[J]. Infect Immun, 2007, 75(1): 481-487. |
[20] | Harada K, Nakanuma Y.Cholangiopathy with respect to biliary innate immunity[J]. Int J Hepatol, 2012, 2012: 793569. |
[21] | Okazawa A, Kanai T, Nakamaru K, et al. Human intestinal epithelial cell-derived interleukin(IL)-18, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes[J]. Clin Exp Immunol, 2004, 136(2): 269-276. |
[22] | Tessema TS, Schwamb B, Lochner M, et al. Dynamics of gut mucosal and systemic Th1/Th2 cytokine responses in interferon-gamma and interleukin-12p40 knock out mice during primary and challenge Cryptosporidium parvum infection[J]. Immunobiology, 2009, 214(6): 454-466. |
[23] | Muller WA.Mechanisms of transendothelial migration of leukocytes[J]. Circ Res, 2009, 105(3): 223-230. |
[24] | Gong AY, Hu G, Zhou R, et al. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection[J]. Int J Parasitol, 2011, 41(3-4): 397-403. |
[25] | Gong AY, Zhou R, Hu G, et al. MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes[J]. J Immunol, 2009, 182(3): 1325-1333. |
[26] | Gong AY, Zhou R, Hu G, et al. Cryptosporidium parvum induces B7-H1 expression in cholangiocytes by down-regulating microRNA-513[J]. J Infect Dis, 2010, 201(1): 160-169. |
[27] | Ricciardolo FL, Sterk PJ, Gaston B, et al. Nitric oxide in health and disease of the respiratory system[J]. Physiol Rev, 2004, 84(3): 731-765. |
[28] | Leitch GJ, He Q.Reactive nitrogen and oxygen species ameliorate experimental cryptosporidiosis in the neonatal BALB/c mouse model[J]. Infect Immun, 1999, 67(11): 5885-5891 |
[29] | Gookin JL, Allen J, Chiang S, et al. Local peroxynitrite formation contributes to early control of Cryptosporidium parvum infection[J]. Infect Immun, 2005, 73(7): 3929-3936. |
[30] | Gookin JL, Chiang S, Allen J, et al. NF-kappaB-mediated expression of iNOS promotes epithelial defense against infection by Cryptosporidium parvum in neonatal piglets[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(1): G164-G174. |
[31] | Zhou R, Gong AY, Eischeid AN, et al. miR-27b targets KSRP to coordinate TLR4-mediated epithelial defense against Cryptosporidium parvum infection[J]. PLoS Pathog, 2012, 8(5): e1002702. |
[32] | Dommett R, Zilbauer M, George JT, et al. Innate immune defence in the human gastrointestinal tract[J]. Mol Immunol, 2005, 42(8): 903-912. |
[33] | Zaalouk TK, Bajaj-Elliott M, George JT, et al. Differential regulation of beta-defensin gene expression during Cryptosporidium parvum infection[J]. Infect Immun, 2004, 72(5): 2772-2779. |
[34] | Tarver AP, Clark DP, Diamond G, et al. Enteric beta-defensin: molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection[J]. Infect Immun, 1998, 66(3): 1045-1056. |
[35] | Marin F, Luquet G, Marie B, et al. Molluscan shell proteins: primary structure, origin, and evolution[J]. Curr Top Dev Biol, 2008, 80: 209-276. |
[36] | Cevallos AM, Bhat N, Verdon R, et al. Mediation of Cryptosporidium parvum infection in vitro by mucin-like glycoproteins defined by a neutralizing monoclonal antibody[J]. Infect Immun, 2000, 68(9): 5167-5175. |
[37] | Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489(7415): 231-241. |
[38] | Taylor BC, Zaph C, Troy AE, et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis[J]. J Exp Med, 2009, 206(3): 655-667. |
[39] | Reigstad CS, Lundén GO, Felin J, et al. Regulation of serum amyloid A3(SAA3)in mouse colonic epithelium and adipose tissue by the intestinal microbiota[J]. PLoS One, 2009, 4(6): e5842. |
[40] | Choi SM, McAleer JP, Zheng M, et al. Innate Stat3-mediated induction of the antimicrobial protein Reg3γ is required for host defense against MRSA pneumonia[J]. J Exp Med, 2013, 210(3): 551-561. |
[41] | Hayden MS, Ghosh S.Shared principles in NF-kappaB signaling[J]. Cell, 2008, 132(3): 344-362. |
[42] | Zhou R, Hu G, Liu J, et al. NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses[J]. PLoS Pathog, 2009, 5(12): e1000681. |
[43] | Zhou R, O’Hara SP, Chen XM. MicroRNA regulation of innate immune responses in epithelial cells[J]. Cell Mol Immunol, 2011, 8(5): 371-379. |
[44] | Pöppelmann B, Klimmek K, Strozyk E, et al. NF{kappa}B-dependent down-regulation of tumor necrosis factor receptor-associated proteins contributes to interleukin-1-mediated enhancement of ultraviolet B-induced apoptosis[J]. J Biol Chem, 2005, 280(16): 15635-15643. |
[45] | Oeckinghaus A, Hayden MS, Ghosh S.Crosstalk in NF-κB signaling pathways[J]. Nat Immunol, 2011, 12(8): 695-708. |
[46] | Chen XM, Levine SA, Splinter PL, et al. Cryptosporidium parvum activates nuclear factor kappaB in biliary epithelia preventing epithelial cell apoptosis[J]. Gastroenterology, 2001, 120(7): 1774-1783. |
[47] | Abrahamsen MS.Complete genome sequence of the apicomplexan, Cryptosporidium parvum[J]. Science, 2004, 304(5669): 441-445. |
[48] | Carpenter S, Aiello D, Atianand MK, et al. A long noncoding RNA mediates both activation and repression of immune response genes[J]. Science, 2013, 341(6147): 789-792. |
[49] | Liu N, Olson EN.MicroRNA regulatory networks in cardiovascular development[J]. Dev Cell, 2010, 18(4): 510-525. |
[50] | Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data[J]. Nucl Acid Res, 2011, 39: D152-D157. |
[51] | Kincaid RP, Sullivan CS.Virus-encoded microRNAs: an overview and a look to the future[J]. PLoS Pathog, 2012, 8(12): e1003018. |
[52] | Zhou R, Feng Y, Chen XM.Non-coding RNAs in epithelial immunity to Cryptosporidium infection[J]. Parasitology, 2014, 141(10): 1233-1243. |
[53] | Zhou R, Hu G, Gong AY, et al. Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells[J]. Nucl Acid Res, 2010, 38(10): 3222-3232. |
[54] | O’Hara SP, Splinter PL, Gajdos GB, et al. NFkappaB p50-CCAAT/enhancer-binding protein beta(C/EBPbeta)-mediated transcriptional repression of microRNA let-7i following microbial infection[J]. J Biol Chem, 2010, 285(1): 216-225. |
[55] | Chen XM, Splinter PL, O’Hara SP, et al. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection[J]. J Biol Chem, 2007, 282(39): 28929-28938. |
[56] | Hu G, Zhou R, Liu J, et al. MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge[J]. J Immunol, 2009, 183(3): 1617-1624. |
[57] | Hu G, Zhou R, Liu J, et al. MicroRNA-98 and let-7 regulate expression of suppressor of cytokine signaling 4 in biliary epithelial cells in response to Cryptosporidium parvum infection[J]. J Infect Dis, 2010, 202(1): 125-135. |
[58] | Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21[J]. Nat Immunol, 2010, 11(2): 141-147. |
[59] | Asirvatham AJ, Gregorie CJ, Hu Z, et al. MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components[J]. Mol Immunol, 2008, 45(7): 1995-2006. |
[60] | Ueda R, Kohanbash G, Sasaki K, et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1[J]. Proc Natl Acad Sci USA, 2009, 106(26): 10746-10751. |
[61] | Hu G, Gong AY, Liu J, et al. miR-221 suppresses ICAM-1 translation and regulates interferon-gamma-induced ICAM-1 expression in human cholangiocytes[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298(4): G542-G550. |
[62] | Kawahigashi Y, Mishima T, Mizuguchi Y, et al. MicroRNA profiling of human intrahepatic cholangiocarcinoma cell lines reveals biliary epithelial cell-specific microRNAs[J]. Nippon Ika Daigaku Zasshi, 2009, 76(4): 188-197. |
[63] | Stievano L, Piovan E, Amadori A.C and CX3C chemokines: cell sources and physiopathological implications[J]. Crit Rev Immunol, 2004, 24(3): 205-228. |
[64] | Zhou R, Gong AY, Chen D, et al. Histone deacetylases and NF-kB signaling coordinate expression of CX3CL1 in epithelial cells in response to microbial challenge by suppressing miR-424 and miR-503[J]. PLoS One, 2013, 8(5): e65153. |
[65] | Chen CY, Shyu AB.AU-rich elements: characterization and importance in mRNA degradation[J]. Trends Biochem Sci, 1995, 20(11): 465-470. |
[66] | Dean JL, Sully G, Clark AR, et al. The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilization[J]. Cell Signal, 2004, 16(10): 1113-1121. |
[67] | Anderson P.Post-transcriptional control of cytokine production[J]. Nat Immunol, 2008, 9(4): 353-359. |
[68] | Stoecklin G, Anderson P.Post transcriptional mechanisms regulating the inflammatory response[J]. Adv Immun, 2006, 89(89): 1-37. |
[69] | Winzen R, Thakur BK, Dittrich-Breiholz O, et al.Functional analysis of KSRP interaction with the AU-rich element of interleukin-8 and identification of inflammatory mRNA targets[J]. Mol Cell Biol, 2007, 27(23): 8388-8400. |
[70] | Subramaniam D, Ramalingam S, May R, et al.Gastrin-mediated interleukin-8 and cyclooxygenase-2 gene expression: differential transcriptional and post transcriptional mechanisms[J]. Gastroenterology, 2008, 134(4): 1070-1082. |
[71] | Pautz A, Art J, Hahn S, et al.Regulation of the expression of inducible nitric oxide synthase[J]. Nitric Oxide, 2010, 23(2): 75-93. |
[72] | Théry C.Exosomes: secreted vesicles and intercellular communications[J]. Biol Rep, 2011, 3: 15. |
[73] | Hu G, Drescher KM, Chen XM.Exosomal miRNAs: biological properties and therapeutic potential[J]. Front Genet, 2012, 3: 56. |
[74] | Smalheiser NR.Exosomal transfer of proteins and RNAs at synapses in the nervous system[J]. Biol Direct, 2007, 2: 35. |
[75] | Valadi H, Ekström K, Bossios A, et al.Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659. |
[76] | Théry C, Ostrowski M, Segura E.Membrane vesicles as conveyors of immune responses[J]. Nat Rev Immunol, 2009, 9(8): 581-593. |
[77] | Hu G, Gong AY, Roth AL, et al.Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobialdefense[J]. PLoS Pathog, 2013, 9(4): e1003261. |
[78] | Mallegol J, Van Niel G, Lebreton C, et al.T84-intestinal epithelial exosomes bear MHC class Ⅱ/peptide complexes potentiating antigen presentation by dendritic cells[J]. Gastroenterology, 2007, 132(5): 1866-1876. |
[79] | Robbins PD, Morelli AE.Regulation of immune responses by extracellular vesicles[J]. Nat Rev Immunol, 2014, 14(3): 195-208. |
[80] | Barakat FM, McDonald V, Di Santo JP, et al. Roles for NK cells and an NK cell-independent source of intestinal gamma interferon for innate immunity to Cryptosporidium parvum infection[J]. Infect Immun, 2009, 77(11): 5044-5049. |
[81] | McDonald V, Korbel DS, Barakat FM, et al. Innate immune responses against Cryptosporidium parvum infection[J]. Parasite Immunol, 2013, 35(2): 55-64. |
[82] | Ungar BL, Kao TC, Burris JA, et al.Cryptosporidium infection in an adult mouse model independent roles for IFN-gammaand CD4+ T lymphocytesin protectiveimmunity[J]. J Immunol, 1991, 147(3): 1014-1022. |
[83] | McDonald V, Bancroft GJ. Mechanisms of innate and acquired resistance to Cryptosporidium parvum infection in SCID mice[J]. Parasite Immunol, 1994, 16(6): 315-320. |
[84] | Chen W, Harp JA, Harmsen AG.Requirements for CD4+ cells and gamma interferon in resolution of established Cryptosporidium parvum infection in mice[J]. Infect Immun, 1993, 61(9): 3928-3932. |
[85] | Takeuchi D, Jones VC, Kobayashi M, et al.Cooperative role of macrophages and neutrophils in host antiprotozoan resistance in mice acutely infected with Cryptosporidium parvum[J]. Infect Immun, 2008, 76(8): 3657-3663. |
[86] | Petry F, Jakobi V, Wagner S, et al.Binding and activation of human and mouse complement by Cryptosporidium parvum(Apicomplexa) and susceptibility of C1q- and MBL-deficient mice toinfection[J]. Mol Immunol, 2008, 45(12): 3392-3400. |
[1] | LI Teng, SHEN Yu-juan, CUI Li-jun, LIU Hua, HU Yuan, JIANG Yan-yan, CAO Jian-ping. Long non-coding RNA NEAT1 involves in intestinal epithelial cell response against Cryptosporidium parvum infection via regulating IL-8 expression [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(4): 487-492. |
[2] | CHEN Yuan-cai, HUANG Jian-ying, LI Jun-qiang, ZHANG Long-xian. Molecular epidemiology and subtype distribution of Cryptosporidium parvum from dairy cattle in China [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 278-284. |
[3] | CHEN Sui-lin, GAO Yuan-li, GUO Shuai, FAN Yong-ling, LIU Tai-ping, XU Wen-yue. Effect and mechanism of high-dose clodronate liposomes treatment on Plasmodium yoelii growth in mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 28-35. |
[4] | DU Kai-ge, ZHUO Xun-hui, LU Shao-hong. Research advances on the innate immunity mechanisms against Toxoplasma gondii [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 764-770. |
[5] | WANG Zuo-ling, PAN Yan-yan, SUN Xiao-dan, CAO Ya-ming. Effect of PD-1 blockade on immune responses in mice infected with Plasmodium berghei [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(4): 405-411. |
[6] | Fen FANG, Zhe LIU, Gui-jun WANG, Qian-ming XU. In vivo characterization of mouse dendritic cells infected with Cryptosporidium parvum in the presence of Toll-like receptor 4 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(3): 265-269. |
[7] | ZENG Jun-ling1,NA Ren-hua2,CHEN Ai-yuan2,WEI Hai-xia2,YAO Yun-ying2,PENG Hong-juan2,YANG Pei-liang 1*,CHEN Xiao-guang2. Observation of the Feline Intestinal Epithelial Cell Infected with Toxoplasma gondii [J]. , 2015, 33(1): 16-32-34. |
[8] | GUO Xiu-xia,WANG Huai-wei *. Research Progress on the Molecular Mechanisms of Mosquito Innate Immunity [J]. , 2015, 33(1): 11-52-57. |
[9] | YANG Qing-li1 *, SHEN Ji-qing2. Pathogen Associated Molecular Patterns of Parasite [J]. , 2013, 31(3): 17-238-241. |
[10] | ZHANG Zong-lu,GUO Yun-hai,LUO Tai-chang,Zhang Yi. Research Progress on Peptidoglycan Recognition Proteins of Medical Shells and Molluscs [J]. , 2012, 30(4): 13-312-316. |
[11] | LIANG Le1,LIU Hai-peng2,CAO Jian-ping3 *. Functional Roles of Macrophage Migration Inhibitory Factor in Anti-parasitic Diseases [J]. , 2012, 30(1): 12-56-60. |
[12] | WANGShu-wei;CUIJing*;WANGZhong-quan;WANGLi. In vitro effect of immune sera on the invasion of Trichinella spiralis infective larvae into intestinal epithelial cells and their development [J]. , 2010, 28(5): 6-352. |
[13] | MAXiao-ming;MENGXiao-li;YINGuo-rong*;LIUHong-li;SHENJin-yan. Dynamic Observation of Attachment and Invasion of Toxoplasma gondiiTachyzoites to Intestinal Mucosa in BALB/c Mice by ChromogenicIn Situ Hybridization Targeting SAG2 mRNA [J]. , 2008, 26(4): 7-276. |
[14] | PENGGuo-hua;YUANKeng;ZHOUXian-min;PENGWei-dong*. Apoptosis of Alveolar Epithelial Cells Induced by Extraction of the Second Stage Larvae of Ascaris lumbricoides [J]. , 2004, 22(4): 4-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||