[1] | Duan MX, Zhou LC, Yang ZQ. Research progress on artemisinin antimalarial resistance of Plasmodium falciparum[J]. China Trop Med, 2022, 22(11): 1086-1091. (in Chinese) | | (段梦茜, 周隆参, 杨照青. 恶性疟原虫青蒿素抗疟药抗性研究进展[J]. 中国热带医学, 2022, 22(11): 1086-1091.) | [2] | Liu TP, Fu Y, Xu W. Immunopathological mechanism of cerebral malaria[J]. Chin J Parasitol Parasit Dis, 2011, 29(1): 64-67. (in Chinese) | | (刘太平, 付雍, 徐文岳. 脑型疟发生的免疫病理机制[J]. 中国寄生虫学与寄生虫病杂志, 2011, 29(1): 64-67.) | [3] | Cao W, Wang Y, Zhang XZ, et al. Research progress in adjunctive therapy of cerebral malaria[J]. Chin J Parasitol Parasit Dis, 2023, 41(3): 1-14. (in Chinese) | | (曹伟, 王一, 张熙致, 等. 脑型疟疾辅助治疗研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3) :1-14.) | [4] | Sofroniew MV. Astrocyte reactivity: Subtypes, states, and functions in CNS innate immunity[J]. Trends Immunol, 2020, 41(9): 758-770. | [5] | Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS inflammation[J]. Neuron, 2020, 108(4): 608-622. | [6] | Lima MN, Freitas RJRX, Passos BABR, et al. Neurovascular interactions in malaria[J]. Neuroimmunomodulation, 2021, 28(3): 108-117. | [7] | Howland SW, Poh CM, Rénia L. Activated brain endothelial cells cross-present malaria antigen[J]. PLoS Pathog, 2015, 11(6): e1004963. | [8] | Wang X, Zhang NN, Shen Y, et al. Protective effect of PDL1 fusion protein on experimental cerebral malaria by inhibiting overactivation of CD8+ T cells[J]. J Trop Med, 2022, 22(3): 322-326, 338, inside front cover. (in Chinese) | | (王旭, 张宁宁, 沈燕, 等. PDL1融合蛋白抑制CD8+ T细胞过度活化对小鼠脑型疟的保护性作用[J]. 热带医学杂志, 2022, 22(3): 322-326, 338, 封2.) | [9] | Wang J, Shen Y, Li Y, et al. Recent progress in immune checkpoint molecules in Plasmodium infection and immunity[J]. Chin J Parasitol Parasit Dis, 2019, 37(4): 472-480. (in Chinese) | | (王军, 沈燕, 李悦, 等. 免疫检查点分子调控在疟原虫感染与免疫中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(4): 472-480.) | [10] | Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation[J]. Science, 1999, 285(5425): 221-227. | [11] | Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes[J]. Neurosci Lett, 2014, 565: 23-29. | [12] | Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487. | [13] | Hasel P, Rose IVL, Sadick JS, et al. Neuroinflammatory astrocyte subtypes in the mouse brain[J]. Nat Neurosci, 2021, 24(10): 1475-1487. | [14] | Wheeler MA, Clark IC, Tjon EC, et al. MAFG-driven astrocytes promote CNS inflammation[J]. Nature, 2020, 578(7796): 593-599. | [15] | Wheeler MA, Quintana FJ. Regulation of astrocyte functions in multiple sclerosis[J]. Cold Spring Harb Perspect Med, 2019, 9(1): a029009. | [16] | Murray TE, Richards CM, Robert-Gostlin VN, et al. Potential neurotoxic activity of diverse molecules released by astrocytes[J]. Brain Res Bull, 2022, 189: 80-101. | [17] | Sarmiento Soto M, Larkin JR, Martin C, et al. STAT3-mediated astrocyte reactivity associated with brain metastasis contributes to neurovascular dysfunction[J]. Cancer Res, 2020, 80(24): 5642-5655. | [18] | Wang J, Sareddy GR, Lu YJ, et al. Astrocyte-derived estrogen regulates reactive astrogliosis and is neuroprotective following ischemic brain injury[J]. J Neurosci, 2020, 40(50): 9751-9771. | [19] | Ceyzériat K, Abjean L, Carrillo-de Sauvage MA, et al. The complex STATes of astrocyte reactivity: how are they controlled by the JAK-STAT3 pathway?[J]. Neuroscience, 2016, 330: 205-218. | [20] | Selinger M, Věchtová P, Tykalová H, et al. Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals potential pathogenic effectors[J]. Comput Struct Biotechnol J, 2022, 20: 2759-2777. | [21] | Zamboni M, Llorens-Bobadilla E, Magnusson JP, et al. A widespread neurogenic potential of neocortical astrocytes is induced by injury[J]. Cell Stem Cell, 2020, 27(4): 605-617. e5. |
|