[1] | Torikai Y, Sasaki Y, Sasaki K, et al. Evaluation of systemic and mucosal immune responses induced by a nasal powder delivery system in conjunction with an OVA antigen in Cynomolgus monkeys[J]. J Pharm Sci, 2021, 110(5): 2038-2046. | [2] | Wei JF, Wang BG, Chen YX, et al. The immunomodulatory effects of active ingredients from Nigella sativa in RAW264.7 cells through NF-κB/MAPK signaling pathways[J]. Front Nutr, 2022, 9: 899797. | [3] | Mosier DA, RD Oberst. Cryptosporidiosis: a global challenge[J]. Ann N Y Acad Sci, 2000, 916: 102-11. | [4] | Pumipuntu N, Piratae S. Cryptosporidiosis: a zoonotic disease concern[J]. Vet World, 2018, 11(5): 681-686. | [5] | Bonnin A, Ojcius DM, Souque P, et al. Characterization of a monoclonal antibody reacting with antigen-4 domain of gp900 in Cryptosporidium parvum invasive stages[J]. Parasitol Res, 2001, 87(8): 589-592. | [6] | Smith HV, Nichols RAB, Grimason AM. Cryptosporidium excystation and invasion: getting to the guts of the matter[J]. Trends Parasitol, 2005, 21(3): 133-142. | [7] | Carruthers VB, Tomley FM. Microneme proteins in api complexans[J]. Subcell Biochem, 2008, 47: 33-45. | [8] | Petersen C, Gut J, Doyle PS, et al. Characterization of a > 900,000-Mr Cryptosporidium parvum sporozoite glycoprotein recognized by protective hyperimmune bovine colostral immunoglobulin[J]. Infect Immun, 1992, 60(12): 5132-5138. | [9] | Zhang MG, Gong PT, Zhang XC, et al. The recombinant glycoprotein GP900 of Cryptosporidium parvum induced activation of Akt and MAPK pathways in HCT-8 cells[J]. J Pathog Biol, 2018, 13(5): 457-461, 467. (in Chinese) | | (张梦鸽, 宫鹏涛, 张西臣, 等. 微小隐孢子虫糖蛋白GP900对HCT-8细胞Akt和MAPK通路的影响[J]. 中国病原生物学杂志, 2018, 13(5): 457-461, 467.) | [10] | Li XH. Subcellular localization and secretion characteristics of glycoprotein GP900 from Cryptosporidium parvum[D]. Changchun: Jilin University, 2022. (in Chinese) | | (李晓慧. 微小隐孢子虫糖蛋白GP900的亚细胞定位及分泌特性研究[D]. 长春: 吉林大学, 2022.) | [11] | Ricci-Azevedo R, Mendon?a-Natividade FC, Santana AC, et al. Microneme proteins 1 and 4 from Toxoplasma gondii induce IL-10 production by macrophages through TLR4 endocytosis[J]. Front Immunol, 2021, 12: 655371. | [12] | Gharpure R, Perez A, Miller AD, et al. Cryptosporidiosis outbreaks - United States, 2009—2017[J]. Morb Mortal Wkly Rep, 2019, 68(25): 568-572. | [13] | Helmy YA, El-Adawy H, Abdelwhab EM. A comprehensive review of common bacterial, parasitic and viral zoonoses at the human-animal interface in Egypt[J]. Pathogens, 2017, 6(3): 33. | [14] | Helmy YA, Spierling NG, Schmidt S, et al. Occurrence and distribution of Giardia species in wild rodents in Germany[J]. Parasit Vectors, 2018, 11(1): 213. | [15] | Zhao P, Ma DX, Yu S, et al. The development of Chinese specific human cytomegalovirus polyepitope recombinant vaccine[J]. Antiviral Res, 2012, 93(2): 260-269. | [16] | Perkins ND. Integrating cell-signalling pathways with NF-kappa B and IKK function[J]. Nat Rev Mol Cell Biol, 2007, 8(1): 49-62. | [17] | Wang L, Lu G, Zhou A, et al. Evaluation of immune responses induced by rhoptry protein 5 and rhoptry protein 7 DNA vaccines against Toxoplasma gondii[J]. Parasite Immunol, 2016, 38(4): 209-217. | [18] | Gonzalez I, Araya P, Schneider I, et al. Pattern recognition receptors and their roles in the host response to Helicobacter pylori infection[J]. Future Microbiol, 2021, 16: 1229-1238. | [19] | Rod-In W, Monmai C, Lee SM, et al. Anti-inflammatory effects of lipids extracted from Arctoscopus japonicus eggs on LPS-stimulated RAW264.7 cells[J]. Mar Drugs, 2019, 17(10): 580. | [20] | Ren Z, Qin T, Qiu FA, et al. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7[J]. Int J Biol Macromol, 2017, 105(Pt 1): 879-885. | [21] | Ghonime M, Emara M, Shawky R, et al. Immunomodulation of RAW264.7 murine macrophage functions and antioxidant activities of 11 plant extracts[J]. Immunol Invest, 2015, 44(3): 237-252. |
|