CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2023, Vol. 41 ›› Issue (4): 486-491.doi: 10.12140/j.issn.1000-7423.2023.04.015
• REVIEWS • Previous Articles Next Articles
WEI Luanting1(), LI Runze2, GUAN Liangchao2, ZHANG Qianyu3, LI Cheng4, CAO Yaming4, ZHAO Yan4,*(
)
Received:
2023-04-24
Revised:
2023-06-17
Online:
2023-08-30
Published:
2023-09-06
Contact:
*E-mail: Supported by:
CLC Number:
WEI Luanting, LI Runze, GUAN Liangchao, ZHANG Qianyu, LI Cheng, CAO Yaming, ZHAO Yan. Research progress of antimalarial drugs[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 486-491.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2023.04.015
治疗 时期 | 药物名称 | 作用机制及优点 | 耐药机制及不足 | 应用现状 | 参考文献 |
---|---|---|---|---|---|
红外期 | 伯氨喹 | 干扰疟原虫红外期能量代谢和呼吸作用,对间日疟原虫和卵形疟原虫的子孢子和配子体有杀灭作用,目前尚未发现耐药性。 | 不良反应明显,可导致红细胞减少,易发生溶血性贫血。 | ① 治疗耐氯喹的恶性疟原虫 ② 与青蒿素类药物联合使用具有根治作用 | [ |
乙胺嘧啶 | 抑制二氢酸还原酶抑制细胞的分裂,抑制疟原虫繁殖,具有阻断作用。 | 二氢叶酸还原酶(Dihydrofolate Reductase,DHFR)S108N的突变导致耐药性产生,使用效果不佳。 | ① 常用于疟疾的预防与阻断传播 ② 与磺胺多辛联合用于防治耐氯喹的恶性疟 | [ | |
红内期 | 奎宁 | 第一种抗疟药,合成方式简单,可抑制有毒的血红素转化为聚合无毒的疟原虫色素,使虫体毒素储积过多死亡。 | 主要作用靶点为恶性疟原虫嘌呤核苷磷酸化酶的突变,导致耐药性产生,且药效低,不良反应较重。 | ① 在非洲部分地区治疗重症疟疾方面仍处于核心地位 ② 乌干达等部分非洲地区,治疗耐青蒿素疟原虫 | [ |
氯喹 | 与奎宁作用机制相似,干扰疟原虫繁殖,因具有长半衰期、高效力、低毒性的特点,代替奎宁成为治疗疟疾的首选药物。 | 氯喹抗性转运蛋白(Plasmodium falciparum chloroquine resistance transporter, Pfcrt)相关基因突变,导致氯喹无法进入疟原虫的消化液泡,无法发挥药效,导致患者病情反复。 | ① 主要治疗无并发症的恶性疟 ② 与其他药物联合使用 | [ | |
苯芴醇 | 形成干扰血红素聚合的复合物,从而阻碍疟原虫裂殖子和配子体的发育,同时血浆半衰期较长,清除疟原虫彻底。 | 水溶性差,须与高脂肪食物共同服用以增强其在胃肠中的吸收,但这不适用于容易发生食欲不振、恶心、呕吐的疟疾患者;控制症状缓慢,病原虫复燃率高。 | ① 蒿甲醚-苯芴醇联合用药,增加了治疗疟疾的类型 ② 口服用药,每日仅需服药一次,方便治疗 | [ | |
哌喹 | 作用机制类似于氯喹,半衰期长、消除缓慢,治疗后预防效果持续久。 | 天冬氨酸蛋白酶2(Plasmepsin2)基因扩增、Pfcrt基因突变等导致耐药性,哌喹单独使用时药效缓慢。 | ① 双氢青蒿素-哌喹(Dihydroar-temisinin-piperaquine, DHP)联合用药,使疗程缩短、起效加快,可治疗无并发症疟疾 ② 适用范围广,可有效治疗恶性疟和各种混合感染的疟疾 | [ | |
阿莫地喹 | 可干扰疟原虫食物液泡中血红素的解毒,从而阻断其在血液阶段的发育,消除较慢。 | 恶性疟原虫多重抗药性蛋白1 (Plasmodium falciparum multidrug resistance protein 1, Pfmdr1)基因、Pfcrt基因突变导致耐药性,可产生多种不良反应,严重时出现肝损伤。 | ① 青蒿琥酯-阿莫地喹联合用药,广泛用于治疗单纯性疟疾 ② 清除原发性感染的恶性疟原虫 | [ | |
青蒿素及其衍生物 | 在人体内代谢为二氢青蒿素,携带有过氧基团,被血红素裂解后产生大量氧自由基,使疟原虫营养代谢、免疫防御相关蛋白烷基化,具有安全性高、发挥效应快等优点。 | 恶性疟原虫Kelch蛋白13(Plasmodium falciparum Kelch protein 13, Pfk13)基因突变导致耐药性,半衰期短,导致患者病情反复。 | 以青蒿素为基础的联合疗法(atemisinin-based combination therapy,ACT),降低疟原虫产生耐药性的概率 | [ |
[1] | World Health Organization. World Malaria Report 2021[R]. Geneva: WHO, 2022. |
[2] |
Arya A, KojomFoko LP, Chaudhry S, et al. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: a systematic review of clinical studies from two malaria endemic regions-India and sub-Saharan Africa[J]. Int J Parasitol Drugs Drug Resist, 2021, 15: 43-56.
doi: 10.1016/j.ijpddr.2020.11.006 |
[3] | Pryce J, Richardson M, Lengeler C. Insecticide-treated nets for preventing malaria[J]. Cochrane Database Syst Rev, 2018, 11(11): CD000363. |
[4] |
Laurens MB. The promise of a malaria vaccine: are we closer?[J]. Annu Rev Microbiol, 2018, 72: 273-292.
doi: 10.1146/micro.2018.72.issue-1 |
[5] |
Mendis K, Rietveld A, Warsame M, et al. From malaria control to eradication: the WHO perspective[J]. Trop Med Int Health, 2009, 14(7): 802-809.
doi: 10.1111/j.1365-3156.2009.02287.x pmid: 19497083 |
[6] |
Brashear AM, Cui LW. Population genomics in neglected malaria parasites[J]. Front Microbiol, 2022, 13: 984394.
doi: 10.3389/fmicb.2022.984394 |
[7] |
Zamil MF, ArefeenSazed S, HaqueHossainey MR, et al. Anti-malarial investigation of Acoruscalamus, Dichapetalumgelonioides, and Leucasaspera on Plasmodium falciparum strains[J]. J Infect Dev Ctries, 2022, 16(11): 1768-1772.
doi: 10.3855/jidc.16741 |
[8] | Amelo W, Makonnen E. Efforts made to eliminate drug-resistant malaria and its challenges[J]. Biomed Res Int, 2021, 2021: 5539544. |
[9] |
Belfield KD, Tichy EM. Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency[J]. Am J Health Syst Pharm, 2018, 75(3): 97-104.
doi: 10.2146/ajhp160961 |
[10] |
Dinis DV, Schapira A. Comparative study of sulfadoxine-pyrimethamine and amodiaquine + sulfadoxine-pyrimethamine for the treatment of malaria caused by chloroquine-resistant Plasmodium falciparum in Maputo, Mozambique[J]. Bull Soc Pathol Exot, 1990, 83(4): 521-528.
pmid: 2286005 |
[11] |
Takala-Harrison S, Laufer MK. Antimalarial drug resistance in Africa: key lessons for the future[J]. Ann N Y Acad Sci, 2015, 1342: 62-67.
doi: 10.1111/nyas.2015.1342.issue-1 |
[12] |
Fukuda N, Tachibana SI, Ikeda M, et al. Ex vivo susceptibility of Plasmodium falciparum to antimalarial drugs in Northern Uganda[J]. Parasitol Int, 2021, 81: 102277.
doi: 10.1016/j.parint.2020.102277 |
[13] | Okombo J, Ohuma E, Picot S, et al. Update on genetic markers of quinine resistance in Plasmodium falciparum[J]. MolBiochem Parasitol, 2011, 177(2): 77-82. |
[14] |
White NJ. The treatment of malaria[J]. N Engl J Med, 1996, 335(11): 800-806.
doi: 10.1056/NEJM199609123351107 |
[15] |
Wellems TE, Plowe CV. Chloroquine-resistant malaria[J]. J Infect Dis, 2001, 184(6): 770-776.
pmid: 11517439 |
[16] |
Mvango S, Matshe WMR, Balogun AO, et al. Nanomedicines for malaria chemotherapy: encapsulation vs. polymer therapeutics[J]. Pharm Res, 2018, 35(12): 237.
doi: 10.1007/s11095-018-2517-z |
[17] | Yang B, Sun YF, Lei Y, et al. Research progress on the treatment of malaria with artemisinin and its derivatives[J]. Chin J Parasitol Parasit Dis, 2021, 39(3): 393-402. (in Chinese) |
(杨博, 孙毅凡, 雷瑶, 等. 青蒿素及其衍生物治疗疟疾的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 393-402.) | |
[18] |
Ashley EA, Phyo AP. Drugs in development for malaria[J]. Drugs, 2018, 78(9): 861-879.
doi: 10.1007/s40265-018-0911-9 pmid: 29802605 |
[19] |
Abuaku B, Boateng P, Peprah NY, et al. Therapeutic efficacy of dihydroartemisinin-piperaquine combination for the treatment of uncomplicated malaria in Ghana[J]. Front Cell Infect Microbiol, 2022, 12: 1058660.
doi: 10.3389/fcimb.2022.1058660 |
[20] | Li N, Huang YM, Cai WB, et al. Advances in the study of the sensitivity of Plasmodium falciparum todihydroartemisinin-piperaquine[J]. J Pathog Biol, 2017, 12(10): 1025-1027. (in Chinese) |
(李娜, 黄亚铭, 蔡文斌, 等. 恶性疟原虫对双氢青蒿素-哌喹敏感性研究进展[J]. 中国病原生物学杂志, 2017, 12(10): 1025-1027.) | |
[21] | Zhao H, Xiang Z, Zhou LC, et al. Research progress of amodiaquine as an antimalarial drug[J]. Chin J Parasitol Parasit Dis, 2022, 40(6): 786-791. (in Chinese) |
(赵卉, 向征, 周隆参, 等. 阿莫地喹作为抗疟药的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 786-791.) | |
[22] |
Hanboonkunupakarn B, Tarning J, Pukrittayakamee S, et al. Artemisinin resistance and malaria elimination: where are we now?[J]. Front Pharmacol, 2022, 13: 876282.
doi: 10.3389/fphar.2022.876282 |
[23] |
Urbán P, Fernàndez-Busquets X. Nanomedicine against malaria[J]. Curr Med Chem, 2014, 21(5): 605-629.
pmid: 24164202 |
[24] |
Gujjari L, Kalani H, Pindiprolu SK, et al. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria[J]. Parasite Epidemiol Control, 2022, 17: e00244.
doi: 10.1016/j.parepi.2022.e00244 |
[25] |
Guasch-Girbau A, Fernàndez-Busquets X. Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies[J]. Pharmaceutics, 2021, 13(12): 2189.
doi: 10.3390/pharmaceutics13122189 |
[26] |
Joshi MC, Egan TJ. Quinoline containing side-chain antimalarial analogs: recent advances and therapeutic application[J]. Curr Top Med Chem, 2020, 20(8): 617-697.
doi: 10.2174/1568026620666200127141550 pmid: 31985377 |
[27] |
Faidallah HM, Panda SS, Serrano JC, et al. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates[J]. Bioorg Med Chem, 2016, 24(16): 3527-3539.
doi: 10.1016/j.bmc.2016.05.060 |
[28] |
Kalita J, Chetia D, Rudrapal M. Design, synthesis, antimalarial activity and docking study of 7-chloro-4- (2-(substituted benzylidene)hydrazineyl)quinolines[J]. Med Chem, 2020, 16(7): 928-937.
doi: 10.2174/1573406415666190806154722 |
[29] | Guo ZR. Transformation of old drugs: a radical antimalarial drug tafenocil[J]. Acta Pharm Sin, 2022, 57(11): 3446-3450. (in Chinese) |
(郭宗儒. 老药改造: 根治性的抗疟药他非诺奎[J]. 药学学报, 2022, 57(11): 3446-3450.) | |
[30] |
Llanos-Cuentas A, Lacerda MVG, Hien TT, et al. Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria[J]. N Engl J Med, 2019, 380(3): 229-241.
doi: 10.1056/NEJMoa1802537 |
[31] |
Zhan YL, Wu YS, Xu FF, et al. A novel dihydroxylated derivative of artemisinin from microbial transformation[J]. Fitoterapia, 2017, 120: 93-97.
doi: S0367-326X(17)30458-6 pmid: 28576722 |
[32] | Tafenoquine, LiverTox: clinical and research information on drug-induced liver injury[R]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. |
[33] |
Summers RL, Pasaje CFA, Pisco JP, et al. Chemogenomics identifies acetyl-coenzyme a synthetase as a target for malaria treatment and prevention[J]. Cell Chem Biol, 2022, 29(2): 191-201.e8.
doi: 10.1016/j.chembiol.2021.07.010 |
[34] |
Knecht W, Loffler M. Inhibition and localization of human and rat dihydroorotate dehydrogenase[J]. Adv Exp Med Biol, 2000, 486: 267-270.
pmid: 11783497 |
[35] |
Hartuti ED, Sakura T, Tagod MSO, et al. Identification of 3, 4-dihydro-2H, 6H-pyrimido[1, 2-c][1, 3]benzothiazin-6-imine derivatives as novel selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase[J]. Int J Mol Sci, 2021, 22(13): 7236.
doi: 10.3390/ijms22137236 |
[36] |
Cheng X, Song ZH, Wang X, et al. A network pharmacology study on the molecular mechanism of protocatechualdehyde in the treatment of diabetic cataract[J]. Drug Des Devel Ther, 2021, 15: 4011-4023.
doi: 10.2147/DDDT.S334693 |
[37] |
Li RX, Ling DZ, Tang TK, et al. Discovery of novel Plasmodium falciparum HDAC1 inhibitors with dual-stage antimalarial potency and improved safety based on the clinical anticancer drug candidate quisinostat[J]. J Med Chem, 2021, 64(4): 2254-2271.
doi: 10.1021/acs.jmedchem.0c02104 |
[38] |
Surur AS, Huluka SA, Mitku ML, et al. Indole: the after next scaffold of antiplasmodial agents?[J]. Drug Des Devel Ther, 2020, 14: 4855-4867.
doi: 10.2147/DDDT.S278588 |
[39] |
Dangi P, Jain R, Mamidala R, et al. Natural product inspired novel indole based chiral scaffold kills human malaria parasites via ionic imbalance mediated cell death[J]. Sci Rep, 2019, 9(1): 17785.
doi: 10.1038/s41598-019-54339-z pmid: 31780808 |
[40] |
Chavchich M, van Breda K, Rowcliffe K, et al. The spiroindolone KAE609 does not induce dormant ring stages in Plasmodium falciparum parasites[J]. Antimicrob Agents Chemother, 2016, 60(9): 5167-5174.
doi: 10.1128/AAC.02838-15 pmid: 27297484 |
[41] |
Marin GE, Neag MA, Burlacu CC, et al. The protective effects of nutraceutical components in methotrexate: induced toxicity models-an overview[J]. Microorganisms, 2022, 10(10): 2053.
doi: 10.3390/microorganisms10102053 |
[42] |
White NJ, Pukrittayakamee S, Hien TT, et al. Malaria[J]. Lancet, 2014, 383(9918): 723-735.
doi: 10.1016/S0140-6736(13)60024-0 pmid: 23953767 |
[43] |
Chughlay MF, El Gaaloul M, Donini C, et al. Chemoprotective antimalarial activity of P218 against Plasmodium falciparum: a randomized, placebo-controlled volunteer infection study[J]. Am J Trop Med Hyg, 2021, 104(4): 1348-1358.
doi: 10.4269/ajtmh.20-1165 |
[44] |
Mayinger P. Phosphoinositides and vesicular membrane traffic[J]. Biochim Biophys Acta, 2012, 1821(8): 1104-1113.
doi: 10.1016/j.bbalip.2012.01.002 pmid: 22281700 |
[45] |
McNamara CW, Lee MC, Lim CS, et al. Targeting Plasmodium phosphatidylinositol 4-kinase to eliminate malaria[J]. Nature, 2013, 504(7479): 248-253.
doi: 10.1038/nature12782 |
[46] | Paquet T, Le MC, Cabrera DG, et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase[J]. Sci Transl Med, 2017, 9(387). |
[47] |
Kundu M, Dutta A, Roy KK, et al. Identification of 5-(3-(methylsulfonyl)phenyl)-3-(4-(methylsulfonyl)phenyl)-3H-imidazo[4, 5-b]pyridine as novel orally bioavailable and metabolically stable antimalarial compound for further exploration[J]. Chem Biol Drug Des, 2023, 101(3): 690-695.
doi: 10.1111/cbdd.v101.3 |
[48] |
Ursing J, Schmidt BA, Lebbad M, et al. Chloroquine resistant P. falciparum prevalence is low and unchanged between 1990 and 2005 in Guinea-Bissau: an effect of high chloroquine dosage?[J]. Infect Genet Evol, 2007, 7(5): 555-561.
doi: 10.1016/j.meegid.2007.03.006 |
[49] |
Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2014, 371(5): 411-423.
doi: 10.1056/NEJMoa1314981 |
[50] |
D'Alessandro U. Progress in the development of piperaquine combinations for the treatment of malaria[J]. Curr Opin Infect Dis, 2009, 22(6): 588-592.
doi: 10.1097/QCO.0b013e328332674a pmid: 19773652 |
[51] |
Kay K, Hodel EM, Hastings IM. Altering antimalarial drug regimens may dramatically enhance and restore drug effectiveness[J]. Antimicrob Agents Chemother, 2015, 59(10): 6419-6427.
doi: 10.1128/AAC.00482-15 pmid: 26239993 |
[52] |
Achan J, Talisuna AO, Erhart A, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria[J]. Malar J, 2011, 10: 144.
doi: 10.1186/1475-2875-10-144 |
[53] |
Tan KR, Magill AJ, Parise ME, et al. Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis[J]. Am J Trop Med Hyg, 2011, 84(4): 517-531.
doi: 10.4269/ajtmh.2011.10-0285 |
[54] |
Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity[J]. Int J Parasitol, 2002, 32(13): 1655-1660.
doi: 10.1016/s0020-7519(02)00194-7 pmid: 12435450 |
[55] |
Tanneru N, Nivya MA, Adhikari N, et al. Plasmodium DDI1 is a potential therapeutic target and important chromatin-associated protein[J]. Int J Parasitol, 2023, 53(3): 157-175.
doi: 10.1016/j.ijpara.2022.11.007 |
[56] | WHO Guidelines Approved by the Guidelines Review Committee. WHO Guidelines for malaria[R]. Geneva: WHO, 2022. |
[57] |
Attaher O, Zaidi I, Kwan JL, et al. Effect of seasonal malaria chemoprevention on immune markers of exhaustion and regulation[J]. J Infect Dis, 2020, 221(1): 138-145.
doi: 10.1093/infdis/jiz415 pmid: 31584094 |
[58] |
Aregawi M, Smith SJ, Sillah-Kanu M, et al. Impact of the mass drug administration for malaria in response to the ebola outbreak in Sierra Leone[J]. Malar J, 2016, 15: 480.
doi: 10.1186/s12936-016-1493-1 |
[59] |
Nikiema S, Soulama I, Sombié S, et al. Seasonal malaria chemoprevention implementation: effect on malaria incidence and immunity in a context of expansion of P. falciparum resistant genotypes with potential reduction of the effectiveness in sub-saharan Africa[J]. Infect Drug Resist, 2022, 15: 4517-4527.
doi: 10.2147/IDR.S375197 pmid: 35992756 |
[60] | Ni SJ. The COVID-19 epidemic increases the global burden of malaria[N]. Acta Scientiae Sinica, 2021-12-10( 003). (in Chinese) |
(倪思洁. 新冠肺炎疫情加重全球疟疾负担[N]. 中国科学报, 2021-12-10 (003).) | |
[61] |
Lopes EA, Santos MMM, Mori M. Antimalarial drugs: what's new in the patents?[J]. Expert Opin Ther Pat, 2023, 33(3): 151-168.
doi: 10.1080/13543776.2023.2203814 |
[62] |
Ambroise-Thomas P. The tragedy caused by fake antimalarial drugs[J]. Mediterr J Hematol Infect Dis, 2012, 4(1): e2012027.
doi: 10.4084/mjhid.2012.027 |
[63] |
Phyo AP, Von Seidlein L. Challenges to replace ACT as first-line drug[J]. Malar J, 2017, 16(1): 296.
doi: 10.1186/s12936-017-1942-5 |
[1] | YE Sheng-yu, CHENG Yi-yi, LI Man, ZHOU Hong-ning. Advances in methods for detecting drug-resistance molecular markers of Plasmodium falciparum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(4): 490-495. |
[2] | HUANG Yan-ting, LU Xue-mei, JIN Xiao-bao, ZHU Jia-yong*. Research Advances on Circumsporzoite Protein of Plasmodium [J]. , 2012, 30(3): 16-238-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||