[1] | Laing R, Gillan V, Devaney E. Ivermectin-old drug, new tricks?[J]. Trends Parasitol, 2017, 33(6): 463-472. | [2] | Yates DM, Portillo V, Wolstenholme AJ. The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans[J]. Int J Parasitol, 2003, 33(11):1183-1193. | [3] | Wolstenholme AJ, Rogers AT. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics[J]. Parasitology, 2005, 131 Suppl: S85-S95. | [4] | Portillo V, Jagannathan S, Wolstenholme AJ. Distribution of glutamate-gated chloride channel subunits in the parasitic nematode Haemonchus contortus[J]. J Comp Neurol, 2003, 462(2):213-222. | [5] | Kotze AC, Prichard RK. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis[J]. Adv Parasitol, 2016, 93: 397-428. | [6] | Blackhall WJ, Liu HY, Xu M, et al. Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus[J]. Mol Biochem Parasitol, 1998, 95(2): 193-201. | [7] | Njue AI, Hayashi J, Kinne L, et al. Mutations in the extracellular domains of glutamate-gated chloride channel alpha3 and beta subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity[J]. J Neurochem, 2004, 89(5): 1137-1147. | [8] | Kotze AC, Hunt PW, Skuce P, et al. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions[J]. Int J Parasitol Drugs Drug Resist, 2014, 4(3): 164-184. | [9] | Lespine A, Ménez C, Bourguinat C, et al. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance[J]. Int J Parasitol Drugs Drug Resist, 2011, 2: 58-75. | [10] | Redman E, Sargison N, Whitelaw F, et al. Introgression of ivermectin resistance genes into a susceptible Haemonchus contortus strain by multiple backcrossing[J]. PLoS Pathog, 2012, 8(2): e1002534. | [11] | Luo XP, Shi XN, Yuan CX, et al. Genome-wide SNP analysis using 2b-RAD sequencing identifies the candidate genes putatively associated with resistance to ivermectin in Haemonchus contortus[J]. Parasit Vectors, 2017, 10(1): 31. | [12] | Barrere V, Falzon LC, Shakya KP, et al. Assessment of benzimidazole resistance in Haemonchus contortus in sheep flocks in Ontario, Canada: comparison of detection methods for drug resistance[J]. Vet Parasitol, 2013, 198(1/2): 159-165. | [13] | Yang X, Lei WQ, Di WD, et al. Investigation of benzimidazole resistance-associated SNPs in the isotype-1 β-tubulin gene in Haemonchus contortus populations in Yili, Xinjiang[J]. Chin J Vet Med, 2018, 54(9): 8-11, 122. (in Chinese) | | ( 杨新, 雷卫强, 邸文达, 等. 新疆伊犁地区捻转血矛线虫种群Ⅰ型β微管蛋白基因苯并咪唑抗药性相关单核苷酸多态性调查[J]. 中国兽医杂志, 2018, 54(9): 8-11, 122.) | [14] | Luo XP, Wang PL, Li JY, et al. Characteristics of albendazole resistance of different ivermectin-resistant Haemonchus contortus isolates in China[J]. Chin J Vet Sci, 2021, 41(7): 1301-1309, 1347. (in Chinese) | | ( 罗晓平, 王鹏龙, 李军燕, 等. 不同耐伊维菌素捻转血矛线虫国内分离株耐阿苯达唑特性[J]. 中国兽医学报, 2021, 41(7): 1301-1309, 1347.) | [15] | Nogimori T, Ogami K, Oishi Y, et al. ABCE1 acts as a positive regulator of exogenous RNA decay[J]. Viruses, 2020, 12(2): 174. | [16] | Tian Y, Han X, Tian DL. The biological regulation of ABCE1[J]. IUBMB Life, 2012, 64(10): 795-800. | [17] | Iida A, Saito S, Sekine A, et al. Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8[J]. J Hum Genet, 2002, 47(6): 285-310. | [18] | Riou M, Guégnard F, Sizaret PY, et al. Drug resistance is affected by colocalization of P-glycoproteins in raft-like structures unexpected in eggshells of the nematode Haemonchus contortus[J]. Biochem Cell Biol, 2010, 88(3): 459-467. | [19] | Riou M, Koch C, Kerboeuf D. Increased resistance to anthelmintics of Haemonchus contortus eggs associated with changes in membrane fluidity of eggshells during embryonation[J]. Parasitol Res, 2005, 95(4): 266-272. | [20] | Chen KY, Featherstone DE. Discs-large (DLG) is clustered by presynaptic innervation and regulates postsynaptic glutamate receptor subunit composition in Drosophila[J]. BMC Biol, 2005, 3: 1. | [21] | Montgomery JM, Zamorano PL, Garner CC. MAGUKs in synapse assembly and function: an emerging view[J]. Cell Mol Life Sci, 2004, 61(7/8): 911-929. |
|