CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2021, Vol. 39 ›› Issue (4): 520-525.doi: 10.12140/j.issn.1000-7423.2021.04.016
• REVIEWS • Previous Articles Next Articles
ZHONG Qiu-ting1(), SONG Jian-ping1, LV Fang-li2,3,4,*(
)
Received:
2020-11-12
Revised:
2020-12-02
Online:
2021-08-30
Published:
2021-06-04
Contact:
LV Fang-li
E-mail:1019746004@qq.com;fanglilu@yahoo.com
Supported by:
CLC Number:
ZHONG Qiu-ting, SONG Jian-ping, LV Fang-li. The interactions between malaria and gut microbiota[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 520-525.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2021.04.016
[1] | World Health Organization. World malaria report 2020[R]. Geneva: World Health Organization, 2020. |
[2] | LYU FL. The interaction between the COVID-19 pandemic and malaria[J/OL]. J Trop Med, 1-6. [2021-05-13]. http://kns.cnki.net/kcms/detail/44.1503.R.20210305.2024.002.html.(in Chinese) |
(吕芳丽. 新型冠状病毒肺炎疫情与疟疾的相互影响[J/OL]. 热带医学杂志: 1-6. [2021-05-13]. http://kns.cnki.net/kcms/detail/44.1503.R.20210305.2024.002.html.) | |
[3] |
Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415):220-230.
doi: 10.1038/nature11550 |
[4] |
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review[J]. Antonie van Leeuwenhoek, 2020, 113(12):2019-2040.
doi: 10.1007/s10482-020-01474-7 |
[5] | Xu M, Shen YJ. Progress of research on the interplay between helminth and intestinal protozoa and gut microbiota[J]. Chin J Schisto Control, 2019, 31(1):77-85, 93. (in Chinese) |
(徐梦, 沈玉娟. 蠕虫及肠道原虫感染与肠道菌群关系研究进展[J]. 中国血吸虫病防治杂志, 2019, 31(1):77-85, 93.) | |
[6] |
Wang YY, Liu F, Urban JF Jr, et al. Ascaris suum infection was associated with a worm-independent reduction in microbial diversity and altered metabolic potential in the porcine gut microbiome[J]. Int J Parasitol, 2019, 49(3/4):247-256.
doi: 10.1016/j.ijpara.2018.10.007 |
[7] |
White EC, Houlden A, Bancroft AJ, et al. Manipulation of host and parasite microbiotas: survival strategies during chronic nematode infection[J]. Sci Adv, 2018, 4(3):eaap7399.
doi: 10.1126/sciadv.aap7399 |
[8] |
Beatty JK, Akierman SV, Motta JP, et al. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms[J]. Int J Parasitol, 2017, 47(6):311-326.
doi: 10.1016/j.ijpara.2016.11.010 |
[9] | Ippolto MM, Denny JE, Langelier C, et al. Malaria and the microbiome: a systematic review[J]. Clin Infect Dis, 2018, 67(12):1831-1839. |
[10] |
Yilmaz B, Portugal S, Tran TM, et al. Gut microbiota elicits a protective immune response against malaria transmission[J]. Cell, 2014, 159(6):1277-1289.
doi: 10.1016/j.cell.2014.10.053 |
[11] |
Villarino NF, LeCleir GR, Denny JE, et al. Composition of the gut microbiota modulates the severity of malaria[J]. Proc Natl Acad Sci USA, 2016, 113(8):2235-2240.
doi: 10.1073/pnas.1504887113 |
[12] | Chinese Society of Microecology, Chinese Preventive Medicine Association. Chinese expert consensus on clinical application of microecological agent in digestive tract (2020 version)[J]. Chin J Microecol, 2020, 32(8):953-965. (in Chinese) |
(中华预防医学会微生态学分会. 中国微生态调节剂临床应用专家共识(2020版)[J]. 中国微生态学杂志, 2020, 32(8):953-965.) | |
[13] |
Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis[J]. Cell Mol Life Sci, 2017, 74(16):2959-2977.
doi: 10.1007/s00018-017-2509-x |
[14] |
Pascale A, Marchesi N, Marelli C, et al. Microbiota and metabolic diseases[J]. Endocrine, 2018, 61(3):357-371.
doi: 10.1007/s12020-018-1605-5 |
[15] |
Ma QQ, Xing CS, Long WY, et al. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis[J]. J Neuroinflammation, 2019, 16(1):53.
doi: 10.1186/s12974-019-1434-3 |
[16] |
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases[J]. Curr Neurol Neurosci Rep, 2017, 17(12):94.
doi: 10.1007/s11910-017-0802-6 |
[17] |
Halverson T, Alagiakrishnan K. Gut microbes in neurocognitive and mental health disorders[J]. Ann Med, 2020, 52(8):423-443.
doi: 10.1080/07853890.2020.1808239 pmid: 32772900 |
[18] | Kobliner V, Mumper E, Baker SM. Reduction in obsessive compulsive disorder and self-injurious behavior with Saccharomyces boulardii in a child with autism: a case report[J]. Integr Med (Encinitas), 2018, 17(6):38-41. |
[19] | Liu YW, Liong MT, Chung YE, et al. Effects of Lactobacillus plantarum PS128 on children with autism spectrum disorder in Taiwan: a randomized, double-blind, placebo-controlled trial[J]. Nutrients, 2019, 11(4):E820. |
[20] |
Mesripour A, Meshkati A, Hajhashemi V. A synbiotic mixture augmented the efficacy of doxepin, venlafaxine, and fluvoxamine in a mouse model of depression[J]. Turk J Pharm Sci, 2020, 17(3):293-298.
doi: 10.4274/tjps |
[21] |
Kantak PA, Bobrow DN, Nyby JG. Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG)[J]. Behav Pharmacol, 2014, 25(1):71-79.
doi: 10.1097/FBP.0000000000000013 |
[22] |
Sanikhani NS, Modarressi MH, Jafari P, et al. The effect of Lactobacillus casei consumption in improvement of obsessive-compulsive disorder: an animal study[J]. Probiotics Antimicrob Proteins, 2020, 12(4):1409-1419.
doi: 10.1007/s12602-020-09642-x |
[23] |
Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics: a review[J]. J Food Sci Technol, 2015, 52(12):7577-7587.
doi: 10.1007/s13197-015-1921-1 |
[24] |
Mantziaris V, Kolios G. Gut microbiota, atherosclerosis, and therapeutic targets[J]. Crit Pathw Cardiol, 2019, 18(3):139-142.
doi: 10.1097/HPC.0000000000000187 pmid: 31348074 |
[25] |
Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe?[J]. Gut, 2020, 69(10):1867-1876.
doi: 10.1136/gutjnl-2020-321153 pmid: 32759302 |
[26] | Huang YF, Liu XH, Wu H, et al. The relationship between intestinal mucosal barrier and intestinal microflora[J]. Chin J Microecol, 2019, 31(12):1465-1469, 1474. (in Chinese) |
(黄艳芬, 刘湘红, 伍浩, 等. 肠黏膜屏障与肠道菌群的相互关系[J]. 中国微生态学杂志, 2019, 31(12):1465-1469, 1474.) | |
[27] | Zhu XP, Su C. Human parasitology[M]. 9 ed. Beijing: People’s Medical Publishing House, 2018. (in Chinese). |
(诸欣平, 苏川. 人体寄生虫学[M]. 9版. 北京: 人民卫生出版社, 2018.) | |
[28] |
Wilairatana P, Meddings JB, Ho M, et al. Increased gastrointestinal permeability in patients with Plasmodium falciparum malaria[J]. Clin Infect Dis, 1997, 24(3):430-435.
pmid: 9114195 |
[29] |
Milner DA, Lee JJ, Frantzreb C, et al. Quantitative assessment of multiorgan sequestration of parasites in fatal pediatric cerebral malaria[J]. J Infect Dis, 2015, 212(8):1317-1321.
doi: 10.1093/infdis/jiv205 pmid: 25852120 |
[30] |
Sowunmi A, Ogundahunsi OAT, Falade CO, et al. Gastrointestinal manifestations of acute falciparum malaria in children[J]. Acta Trop, 2000, 74(1):73-76.
pmid: 10643910 |
[31] |
Shimada M, Hirose Y, Shimizu K, et al. Upper gastrointestinal pathophysiology due to mouse malaria Plasmodium berghei ANKA infection[J]. Trop Med Health, 2019, 47:18.
doi: 10.1186/s41182-019-0146-9 |
[32] |
Taniguchi T, Miyauchi E, Nakamura S, et al. Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis[J]. Sci Rep, 2015, 5:15699.
doi: 10.1038/srep15699 pmid: 26503461 |
[33] |
Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of enterobacteriaceae[J]. Cell Host Microbe, 2007, 2(3):204.
doi: 10.1016/j.chom.2007.08.002 |
[34] |
Ouwerkerk JP, de Vos WM, Belzer C. Glycobiome: bacteria and mucus at the epithelial interface[J]. Best Pract Res Clin Gastroenterol, 2013, 27(1):25-38.
doi: 10.1016/j.bpg.2013.03.001 pmid: 23768550 |
[35] |
Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015):337-341.
doi: 10.1126/science.1198469 pmid: 21205640 |
[36] |
Haque A, Best SE, Amante FH, et al. CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo[J]. PLoS Pathog, 2010, 6(12):e1001221.
doi: 10.1371/journal.ppat.1001221 |
[37] |
Fan ZG, Li X, Fu HY, et al. Gut microbiota reconstruction following host infection with blood-stage Plasmodium berghei ANKA strain in a murine model[J]. Curr Med Sci, 2019, 39(6):883-889.
doi: 10.1007/s11596-019-2119-y |
[38] |
Denny JE, Powers JB, Castro HF, et al. Differential sensitivity to Plasmodium yoelii infection in C57BL/6 mice impacts gut-liver axis homeostasis[J]. Sci Rep, 2019, 9(1):3472.
doi: 10.1038/s41598-019-40266-6 |
[39] |
Lorenzo-Zúñiga V, Bartolí R, Planas R, et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats[J]. Hepatology, 2003, 37(3):551-557.
pmid: 12601352 |
[40] | Fan ZG. Changes of intestinal microflora and cellular immune and its mechanism in malaria mice in early erythrocytic stage[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese) |
(范志刚. 红内期早期疟鼠肠道菌群和细胞免疫改变及其机制[D]. 武汉: 华中科技大学, 2019.) | |
[41] |
Mandal RK, Crane RJ, Berkley JA, et al. Longitudinal analysis of infant stool bacteria communities before and after acute febrile malaria and artemether-lumefantrine treatment[J]. J Infect Dis, 2019, 220(4):687-698.
doi: 10.1093/infdis/jiy740 |
[42] |
Denny JE, Schmidt NW. Oral administration of clinically relevant antimalarial drugs does not modify the murine gut microbiota[J]. Sci Rep, 2019, 9(1):11952.
doi: 10.1038/s41598-019-48454-0 |
[43] |
Takem EN, Roca A, Cunnington A. The association between malaria and non-typhoid Salmonella bacteraemia in children in sub-Saharan Africa: a literature review[J]. Malar J, 2014, 13(1):1-13.
doi: 10.1186/1475-2875-13-1 |
[44] |
Potts RA, Tiffany CM, Pakpour N, et al. Mast cells and histamine alter intestinal permeability during malaria parasite infection[J]. Immunobiology, 2016, 221(3):468-474.
doi: 10.1016/j.imbio.2015.11.003 |
[45] |
Chau JY, Tiffany CM, Nimishakavi S, et al. Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia[J]. Infect Immun, 2013, 81(10):3515-3526.
doi: 10.1128/IAI.00380-13 |
[46] |
Mooney JP, Butler BP, Lokken KL, et al. The mucosal inflammatory response to non-typhoidal Salmonella in the intestine is blunted by IL-10 during concurrent malaria parasite infection[J]. Mucosal Immunol, 2014, 7(6):1302-1311.
doi: 10.1038/mi.2014.18 pmid: 24670425 |
[47] |
Mooney JP, Lokken KL, Byndloss MX, et al. Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection[J]. Sci Rep, 2015, 5:14603.
doi: 10.1038/srep14603 pmid: 26434367 |
[48] |
Alamer E, Carpio VH, Ibitokou SA, et al. Dissemination of non-typhoidal Salmonella during Plasmodium chabaudi infection affects anti-malarial immunity[J]. Parasitol Res, 2019, 118(7):2277-2285.
doi: 10.1007/s00436-019-06349-z |
[49] |
Yooseph S, Kirkness EF, Tran TM, et al. Stool microbiota composition is associated with the prospective risk of Plasmodium falciparum infection[J]. BMC Genomics, 2015, 16:631.
doi: 10.1186/s12864-015-1819-3 pmid: 26296559 |
[50] |
Ngwa CJ, Pradel G. Coming soon: probiotics-based malaria vaccines[J]. Trends Parasitol, 2015, 31(1):2-4.
doi: 10.1016/j.pt.2014.11.006 |
[51] |
Aguilar R, Ubillos I, Vidal M, et al. Antibody responses to α-Gal in African children vary with age and site and are associated with malaria protection[J]. Sci Rep, 2018, 8(1):9999.
doi: 10.1038/s41598-018-28325-w pmid: 29968771 |
[52] |
Cabezas-Cruz A, Mateos-Hernández L, Alberdi P, et al. Effect of blood type on anti-α-Gal immunity and the incidence of infectious diseases[J]. Exp Mol Med, 2017, 49(3):e301.
doi: 10.1038/emm.2016.164 |
[53] | de Kivit S, Tobin MC, Forsyth CB, et al. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics[J]. Front Immunol, 2014, 5:60. |
[54] |
Kumar H, Salminen S, Verhagen H, et al. Novel probiotics and prebiotics: road to the market[J]. Curr Opin Biotechnol, 2015, 32:99-103.
doi: 10.1016/j.copbio.2014.11.021 |
[55] |
Pérez-Mazliah D, Ng DH, Freitas do Rosário AP, et al. Disruption of IL-21 signaling affects T cell-B cell interactions and abrogates protective humoral immunity to malaria[J]. PLoS Pathog, 2015, 11(3):e1004715.
doi: 10.1371/journal.ppat.1004715 |
[56] |
Butler NS, Moebius J, Pewe LL, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection[J]. Nat Immunol, 2011, 13(2):188-195.
doi: 10.1038/ni.2180 pmid: 22157630 |
[57] |
Curd RD, Birdsall B, Kadekoppala M, et al. The structure of Plasmodium yoelii merozoite surface protein 119, antibody specificity and implications for malaria vaccine design[J]. Open Biol, 2014, 4:130091.
doi: 10.1098/rsob.130091 |
[58] |
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity[J]. Nat Rev Immunol, 2016, 16(6):341-352.
doi: 10.1038/nri.2016.42 |
[59] |
Chakravarty S, Mandal RK, Duff ML, et al. Intestinal short-chain fatty acid composition does not explain gut microbiota-mediated effects on malaria severity[J]. PLoS One, 2019, 14(3):e0214449.
doi: 10.1371/journal.pone.0214449 |
[60] | Stough JM, Dearth SP, Denny JE, et al. Functional characteristics of the gut microbiome in C57BL/6 mice differentially susceptible to Plasmodium yoelii[J]. Front Microbiol, 2016, 7:1520. |
[61] | Morffy Smith CD, Gong MH, Andrew AK, et al. Composition of the gut microbiota transcends genetic determinants of malaria infection severity and influences pregnancy outcome[J]. EBio Medicine, 2019, 44:639-655. |
[62] |
Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150(3):470-480.
doi: 10.1016/j.cell.2012.07.008 pmid: 22863002 |
[1] | GONG Yanfeng, LI Zifen, TANG Guai, HUANG Meiqin, ZHOU Binghua, HU Qiang. Epidemiological characteristics of malaria in Jiangxi Province from 2015 to 2022 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 586-592. |
[2] | WEI Luanting, LI Runze, GUAN Liangchao, ZHANG Qianyu, LI Cheng, CAO Yaming, ZHAO Yan. Research progress of antimalarial drugs [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 486-491. |
[3] | ZHANG Le, XIA Jiawei, LI Xiang, MA Zhongxu, JIANG Jianjie, TANG Yalin, LIU Shu, ZHANG Kaiyi. Clinical analysis of imported COVID-19 cases complicated with severe falciparum malaria [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 506-509. |
[4] | CAO Wei, WANG Yi, ZHANG Xizhi, TONG Guodong, YANG Chao, SHEN Yan, ZHAO Ya. Research progress in adjunctive therapy of cerebral malaria [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 361-373. |
[5] | GENG Yan, LAN Ziyao, LI Yang, DAI Jiarui, CAI Shan, LU Lidan, HUANG Yuting, SHI Weifang, SHE Danya. Epidemiological analysis of malaria in Guizhou Province from 2017 to 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 384-388. |
[6] | ZHANG Li, YI Boyu, YIN Jianhai, XIA Zhigui. Epidemiological characteristics of malaria in China, 2022 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 137-141. |
[7] | CHEN Zhuyun, OUYANG Rong, XIAO Lizhen, LIN Yaoying, XIE Hanguo, ZHANG Shanying. Current status of the primary surveillance and response system during the post malaria elimination phase in Fujian Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 170-175. |
[8] | SUN Jun. The biological significance of malarial hemozoin’s formation [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 209-212. |
[9] | CHEN Zhihui, HONG Jing, ZHANG Rongbing, YANG Qian, YE Qing, LI Jianrong, TIAN Rong. Epidemiological analysis on malaria cases reported in Kunming during 2006—2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 233-237. |
[10] | LIU Jiancheng, XU Yan, WANG Longjiang, KONG Xiangli, WANG Yongbin, LI Yuejin. Surveillance on imported malaria in Linyi City of Shandong Province from 2015 to 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 249-252. |
[11] | ZHANG Yaoguang, JIANG Li, WANG Zhenyu, ZHU Min, ZHU Qian, MA Xiaojiang, YU Qing, Chen Jian. Analysis of the causes of misdiagnosis of seven imported malaria cases in Shanghai from 2020 to 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 68-74. |
[12] | LI Su-hua, JI Peng-hui, ZHOU Rui-min, HE Zhi-quan, QIAN Dan, YANG Cheng-yun, LIU Ying, LU De-ling, WANG Hao, ZHANG Hong-wei, ZHAO Yu-ling. Appraisal of diagnosis capacity of malaria reference laboratories in Henan Province during 2015—2019 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 748-753. |
[13] | LI Mei, ZHOU He-jun, XIA Zhi-gui, ZHANG Li, TU Hong, YIN Jian-hai. Quality evaluation on the preparation of the malaria blood smears at the national level in 2019 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 754-759. |
[14] | ZHAO Hui, XIANG Zheng, ZHOU Long-can, PAN Mao-hua, YANG Zhao-qing. Research progress of amodiaquine as an antimalarial drug [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 786-791. |
[15] | JI Peng-hui, JIANG Tian-tian, HE Zhi-quan, ZHOU Rui-min, LI Su-hua, YANG Cheng-yun, QIAN Dan, LIU Ying, WANG Hao, ZHANG Hong-wei. Analysis on epidemiological characteristics of imported quartan malaria in Henan Province from 2011 to 2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 801-805. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||